IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920306329.html
   My bibliography  Save this article

Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing

Author

Listed:
  • Ryu, Ji-Ho
  • Kim, Sungjun

Abstract

In this work, a built-in selector synaptic memristor is proposed to minimize sneak current in synapse array. The Ti/TiO2/HfO2/Si device exhibits nonlinear and high rectifying current-voltage characteristics compared to Ti/TiO2/Si device. Under negative bias conditions, the physical model supported by material analysis reveals that the Schottky barrier at the interface between Ti and TiO2 suppresses the current. Due to nonlinear and self-rectifying characteristics, a bilayer device has a significantly larger array size (> 105 × 105) with a securing read margin of 10%, using the modified half-bias scheme. A multi-level interface-type switching behavior is desired to implement synaptic functions, including potentiation and depression, and spike-timing-dependent plasticity. It was verified that the recognition rate in the bilayer device is significantly more accurate in a neural network model employing the Fashion MNIST dataset.

Suggested Citation

  • Ryu, Ji-Ho & Kim, Sungjun, 2020. "Artificial synaptic characteristics of TiO2/HfO2 memristor with self-rectifying switching for brain-inspired computing," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306329
    DOI: 10.1016/j.chaos.2020.110236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jinwoong & Ryu, Hojeong & Kim, Sungjun, 2021. "Resistive and synaptic properties modulation by electroforming polarity in CMOS-compatible Cu/HfO2/Si device," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Li, Kexin & Bao, Bocheng & Ma, Jun & Chen, Mo & Bao, Han, 2022. "Synchronization transitions in a discrete memristor-coupled bi-neuron model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    5. Kim, Dahye & Kim, Sunghun & Kim, Sungjun, 2021. "Logic-in-memory application of CMOS compatible silicon nitride memristor," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    4. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Chen, Ruyin & Xiong, Yue & Li, Zekun & He, Zhifen & Hou, Fang & Zhou, Jiawei, 2022. "Effects of correlated noises on binocular rivalry," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Guarcello, C. & Bergeret, F.S., 2021. "Thermal noise effects on the magnetization switching of a ferromagnetic anomalous Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    9. Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    10. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Yang, Jinwoong & Ryu, Hojeong & Kim, Sungjun, 2021. "Resistive and synaptic properties modulation by electroforming polarity in CMOS-compatible Cu/HfO2/Si device," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Matrozova, E.A. & Pankratov, A.L., 2023. "Noise and generation effects in parallel Josephson junction chains," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Ladeynov, D.A. & Egorov, D.G. & Pankratov, A.L., 2023. "Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Guseinov, D.V. & Matyushkin, I.V. & Chernyaev, N.V. & Mikhaylov, A.N. & Pershin, Y.V., 2021. "Capacitive effects can make memristors chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    17. Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    18. Scharf, Yael, 2017. "A chaotic outlook on biological systems," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 42-47.
    19. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    20. Shchanikov, Sergey & Zuev, Anton & Bordanov, Ilya & Danilin, Sergey & Lukoyanov, Vitaly & Korolev, Dmitry & Belov, Alexey & Pigareva, Yana & Gladkov, Arseny & Pimashkin, Alexey & Mikhaylov, Alexey & K, 2021. "Designing a bidirectional, adaptive neural interface incorporating machine learning capabilities and memristor-enhanced hardware," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920306329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.