IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v638y2024ics0378437124001365.html
   My bibliography  Save this article

Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors

Author

Listed:
  • Zhang, Ruoqi
  • Meng, Lin
  • Yu, Lei
  • Shi, Sihong
  • Wang, Huiqi

Abstract

The investigation of collective behaviors and synergies in coupled systems holds great significance in many fields. In this paper, we propose the coupled system of overdamped fluctuating–damping oscillators in a general network framework. Our initial theoretical analysis focuses on the system’s synchronization and stability, revealing that both the first and second moments of the mean field are asymptotic stability, and the system exhibits a property of stochastic asymptotic synchronization with the mean field, irrespective of coupled structures. Furthermore, we explore the system’s collective behaviors by analyzing the output amplitude amplification (OAA), where we observe the emergence of generalized stochastic resonance (GSR) phenomena. Finally, we numerically verify the influence of system parameters on stability and synchronization in different coupled structures by introducing the mean first stability time and mean first synchronization time in the simulations. Our findings indicate that the structure does not significantly influence the system stability, whereas it does play a synergistic role in influencing the synchronization. Moreover, we further extend the investigation in complex networks, and observe the non-monotonous phenomena of mean first synchronization time varying with the heterogeneity.

Suggested Citation

  • Zhang, Ruoqi & Meng, Lin & Yu, Lei & Shi, Sihong & Wang, Huiqi, 2024. "Collective dynamics of fluctuating–damping coupled oscillators in network structures: Stability, synchronism, and resonant behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
  • Handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s0378437124001365
    DOI: 10.1016/j.physa.2024.129628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124001365
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vishwamittar, & Batra, Priyanka & Chopra, Ribhu, 2021. "Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    2. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    3. Simon Gross & Christoph Barmet & Benjamin E. Dietrich & David O. Brunner & Thomas Schmid & Klaas P. Pruessmann, 2016. "Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    4. Gao, Shilong & Gao, Nunan & Kan, Bixia & Wang, Huiqi, 2021. "Stochastic resonance in coupled star-networks with power-law heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    5. He, Guitian & Guo, Dali & Tian, Yan & Li, Tiejun & Luo, Maokang, 2017. "Mittag-Leffler noise induced stochastic resonance in a generalized Langevin equation with random inherent frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 91-103.
    6. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    7. Lin, Lifeng & He, Minyue & Wang, Huiqi, 2022. "Collective resonant behaviors in two coupled fluctuating-mass oscillators with tempered Mittag-Leffler memory kernel," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Lv, Wangyong & Wang, Huiqi & Lin, Lifeng & Wang, Fei & Zhong, Suchuan, 2015. "Transport properties of elastically coupled fractional Brownian motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 149-161.
    9. Ren, Ruibin & Deng, Ke, 2019. "Noise and periodic signal induced stochastic resonance in a Langevin equation with random mass and frequency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 145-155.
    10. Betül Kalaycı & Ayşe Özmen & Gerhard-Wilhelm Weber, 2020. "Mutual relevance of investor sentiment and finance by modeling coupled stochastic systems with MARS," Annals of Operations Research, Springer, vol. 295(1), pages 183-206, December.
    11. Tian, Yan & Yu, Tao & He, Gui-Tian & Zhong, Lin-Feng & Stanley, H. Eugene, 2020. "The resonance behavior in the fractional harmonic oscillator with time delay and fluctuating mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    12. Rzehak, R. & Zimmermann, W., 2003. "Inertial effects in Brownian motion of a trapped particle in shear flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 495-508.
    13. He, Lifang & Wu, Xia & Zhang, Gang, 2020. "Stochastic resonance in coupled fractional-order linear harmonic oscillators with damping fluctuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. J. Gómez-Ordóñez & J. Casado & M. Morillo, 2011. "Arrays of noisy bistable elements with nearest neighbor coupling: equilibrium and stochastic resonance," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(2), pages 179-187, July.
    15. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    16. K. Hennessy & A. Badolato & M. Winger & D. Gerace & M. Atatüre & S. Gulde & S. Fält & E. L. Hu & A. Imamoğlu, 2007. "Quantum nature of a strongly coupled single quantum dot–cavity system," Nature, Nature, vol. 445(7130), pages 896-899, February.
    17. Chen, Xi & Luo, Maokang & Zhong, Yangfan & Zhang, Lu, 2022. "Collective dynamic behaviors of a general adjacent coupled chain in both unconfined and confined spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Lifeng & Lin, Tianzhen & Zhang, Ruoqi & Wang, Huiqi, 2023. "Generalized stochastic resonance in a time-delay fractional oscillator with damping fluctuation and signal-modulated noise," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    2. Du, Yuru & Meng, Lin & Lin, Lifeng & Wang, Huiqi, 2024. "Resonant behaviors of two coupled fluctuating-frequency oscillators with tempered Mittag-Leffler memory kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Li, Jiangcheng & Zhang, Chunmin & Liu, Jifa & Li, Zhen & Yang, Xuan, 2018. "An application of Mean Escape Time and metapopulation on forestry catastrophe insurance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 312-323.
    5. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    6. Mondal, Chirodeep & Kesh, Dipak & Mukherjee, Debasis, 2023. "Global stability and bifurcation analysis of an infochemical induced three species discrete-time phytoplankton–zooplankton model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Zhong, Guang-Yan & Li, Hai-Feng & Li, Jiang-Cheng & Mei, Dong-Cheng & Tang, Nian-Sheng & Long, Chao, 2019. "Coherence and anti-coherence resonance of corporation finance," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 376-385.
    8. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Lini Qiu & Guitian He & Yun Peng & Huijun Lv & Yujie Tang, 2023. "Average amplitudes analysis for a phenomenological model under hydrodynamic interactions with periodic perturbation and multiplicative trichotomous noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(4), pages 1-20, April.
    10. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    11. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    12. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    14. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    15. Wu, Jianjun & Xia, Lu, 2024. "Double well stochastic resonance for a class of three-dimensional financial systems," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Li, Jiang-Cheng & Xu, Ming-Zhe & Han, Xu & Tao, Chen, 2022. "Dynamic risk resonance between crude oil and stock market by econophysics and machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    17. Han, Cheng & Wang, Yan & Jiang, Daqing, 2023. "Dynamics analysis of a stochastic HIV model with non-cytolytic cure and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    18. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    19. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Tian, Yan & He, Guitian & Liu, Zhibin & Zhong, Linfeng & Yang, Xinping & Stanley, H. Eugene & Tu, Zhe, 2021. "The impact of memory effect on resonance behavior in a fractional oscillator with small time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:638:y:2024:i:c:s0378437124001365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.