IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v564y2021ics0378437120308013.html
   My bibliography  Save this article

Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises

Author

Listed:
  • Fang, Yuwen
  • Luo, Yuhui
  • Ma, Zhiqing
  • Zeng, Chunhua

Abstract

We investigate the transport properties of active Brownian particle (ABP) in the Schweitzer–Ebeling–Tilch (SET) model, driven by cross-correlation between multiplicative and additive noises and a bias force. It is shown that (i) the cross-correlated noises and bias force can lead to a transition from bimodal to unimodal, and the numerical simulations are in good agreement with the theoretical results; (ii) the cross-correlated noises and bias force can enhance the transport and weaken the diffusion of the ABP; (iii) the multiplicative noise can facilitate the transport and enhance the diffusion of the ABP, and a giant diffusion by a larger multiplicative noise, whereas the additive noise can weaken the transport of the ABP. A physical mechanism for the transport and diffusion of the ABP is derived from the effective velocity potential for the above findings; and (iv) the cross-correlated noises and bias force can enhance the collective motion of coupled active Brownian particles (ABPs), i.e., better synchronization between N coupled ABPs. It can provide a possible strategy for controlling active motion.

Suggested Citation

  • Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
  • Handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308013
    DOI: 10.1016/j.physa.2020.125503
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308013
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. Cugliandolo, Leticia F. & Gonnella, Giuseppe & Suma, Antonio, 2015. "Fluctuations of rotational and translational degrees of freedom in an interacting active dumbbell system," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 556-566.
    3. Schimansky-Geier, Lutz & Erdmann, Udo & Komin, Niko, 2005. "Advantages of hopping on a zig-zag course," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(1), pages 51-59.
    4. Wu, Dan & Zhu, Shiqun, 2013. "Effects of diversity and coupling on transport properties of globally coupled active Brownian particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1280-1286.
    5. Wang, Can-Jun & Yang, Ke-Li & Du, Chun-Yan, 2017. "Multiple cross-correlation noise induced transition in a stochastic bistable system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 261-274.
    6. Can-Jun Wang & Ke-Li Yang, 2016. "Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(8), pages 1-11, August.
    7. Guan, Lin & Fang, Yuwen & Li, Kongzhai & Zeng, Chunhua & Yang, Fengzao, 2018. "Transport properties of active Brownian particles in a modified energy-depot model driven by correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 716-728.
    8. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    9. Tian, Meng-Yu & Wang, Can-Jun & Yang, Ke-Li & Fu, Peng & Xia, Chun-Yan & Zhuo, Xiao-Jing & Wang, Lei, 2020. "Estimating the nonlinear effects of an ecological system driven by Ornstein-Uhlenbeck noise," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Ou, Ya-li & Hu, Cai-tian & Wu, Jian-chun & Ai, Bao-quan, 2015. "Absolute negative mobility of interacting Brownian particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 1-6.
    11. Wang, Kang-Kang & Ju, Lin & Wang, Ya-Jun & Li, Sheng-Hong, 2018. "Impact of colored cross-correlated non-Gaussian and Gaussian noises on stochastic resonance and stochastic stability for a metapopulation system driven by a multiplicative signal," Chaos, Solitons & Fractals, Elsevier, vol. 108(C), pages 166-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Fang, Yuwen & Luo, Yuhui & Zeng, Chunhua, 2022. "Dichotomous noise-induced negative mass and mobility of inertial Brownian particle," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tonghuan & Guan, Lin & Zeng, Chunhua, 2019. "Transition induce by positive and negative time delay feedback in active Brownian particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Li, Jiangcheng & Zhang, Chunmin & Liu, Jifa & Li, Zhen & Yang, Xuan, 2018. "An application of Mean Escape Time and metapopulation on forestry catastrophe insurance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 312-323.
    5. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    8. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Li, Mengdi & Shi, Peiming & Zhang, Wenyue & Han, Dongying, 2020. "Study on the optimal stochastic resonance of different bistable potential models based on output saturation characteristic and application," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Han, Ping & Wang, Liang & Xu, Wei & Zhang, Hongxia & Ren, Zhicong, 2021. "The stochastic P-bifurcation analysis of the impact system via the most probable response," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    13. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Zhong, Guang-Yan & He, Feng & Li, Jiang-Cheng & Mei, Dong-Cheng & Tang, Nian-Sheng, 2019. "Coherence resonance-like and efficiency of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    16. Shi, Peiming & Zhang, Wenyue & Han, Dongying & Li, Mengdi, 2019. "Stochastic resonance in a high-order time-delayed feedback tristable dynamic system and its application," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 155-166.
    17. Yakimov, Arkady V. & Filatov, Dmitry O. & Gorshkov, Oleg N. & Klyuev, Alexey V. & Shtraub, Nikolay I. & Kochergin, Viktor S. & Spagnolo, Bernardo, 2021. "Influence of oxygen ion elementary diffusion jumps on the electron current through the conductive filament in yttria stabilized zirconia nanometer-sized memristor," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    19. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.