IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics096007792030271x.html
   My bibliography  Save this article

Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model

Author

Listed:
  • Xu, Chaoqun

Abstract

A phenomenon of the noise-induced oscillatory transitions in a predator-prey model of Leslie type with generalized Holling type III functional response is studied. The original deterministic model can exhibit different kinds of phase portraits (one, two or three stable states) for various parameter values. When the predator-prey model is subjected to environmental noise, we find that the stochastic trajectory started near one of the deterministic attractors may experience the oscillatory transitions between different zones. To reveal the probabilistic mechanisms of the noise-induced transitions, we construct the confidence domains of stochastic attractors by applying the technique of stochastic sensitivity functions. It is showed that increasing the noise intensity results in an intersection between different confidence domains, and then the phenomenon of oscillatory transitions can occur.

Suggested Citation

  • Xu, Chaoqun, 2020. "Probabilistic mechanisms of the noise-induced oscillatory transitions in a Leslie type predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s096007792030271x
    DOI: 10.1016/j.chaos.2020.109871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030271X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valenti, D. & Tranchina, L. & Brai, M. & Caruso, A. & Cosentino, C. & Spagnolo, B., 2008. "Environmental metal pollution considered as noise: Effects on the spatial distribution of benthic foraminifera in two coastal marine areas of Sicily (Southern Italy)," Ecological Modelling, Elsevier, vol. 213(3), pages 449-462.
    2. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    3. Li, Yilong & Xiao, Dongmei, 2007. "Bifurcations of a predator–prey system of Holling and Leslie types," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 606-620.
    4. D. Valenti & L. Schimansky-Geier & X. Sailer & B. Spagnolo, 2006. "Moment equations for a spatially extended system of two competing species," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 199-203, March.
    5. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2019. "Stochastic variability and transitions to chaos in a hierarchical three-species population model," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 276-283.
    6. A. Dubkov & B. Spagnolo, 2008. "Verhulst model with Lévy white noise excitation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 361-367, October.
    7. Bashkirtseva, I. & Ryashko, L., 2019. "Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 78-84.
    8. Xu, Chaoqun & Yuan, Sanling & Zhang, Tonghua, 2018. "Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 891-902.
    9. Yu, Xingwang & Yuan, Sanling & Zhang, Tonghua, 2019. "Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 249-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Tiancai, 2022. "The impact of plankton body size on phytoplankton-zooplankton dynamics in the absence and presence of stochastic environmental fluctuation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    4. Bashkirtseva, I. & Ryashko, L., 2019. "Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 78-84.
    5. Liu, Jian & Qiao, Zijian & Ding, Xiaojian & Hu, Bing & Zang, Chuanlai, 2021. "Stochastic resonance induced weak signal enhancement over controllable potential-well asymmetry," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Zhang, Wenyue & Shi, Peiming & Li, Mengdi & Han, Dongying, 2021. "A novel stochastic resonance model based on bistable stochastic pooling network and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    8. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Mi, Li-Na & Guo, Yong-Feng & Zhang, Meng & Zhuo, Xiao-Jing, 2023. "Stochastic resonance in gene transcriptional regulatory system driven by Gaussian noise and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Han, Ping & Wang, Liang & Xu, Wei & Zhang, Hongxia & Ren, Zhicong, 2021. "The stochastic P-bifurcation analysis of the impact system via the most probable response," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Bashkirtseva, Irina & Perevalova, Tatyana & Ryashko, Lev, 2020. "Noise-induced shifts in dynamics of multi-rhythmic population SIP-model," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    16. Chen, Jianxin & Zhang, Tonghua & Zhou, Yong-wu, 2021. "Stochastic sensitivity and dynamical complexity of newsvendor models subject to trade credit," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 471-486.
    17. Yakimov, Arkady V. & Filatov, Dmitry O. & Gorshkov, Oleg N. & Klyuev, Alexey V. & Shtraub, Nikolay I. & Kochergin, Viktor S. & Spagnolo, Bernardo, 2021. "Influence of oxygen ion elementary diffusion jumps on the electron current through the conductive filament in yttria stabilized zirconia nanometer-sized memristor," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    18. Wang, Yupin & Liu, Shutang & Li, Hui & Wang, Da, 2019. "On the spatial Julia set generated by fractional Lotka-Volterra system with noise," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 129-138.
    19. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s096007792030271x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.