IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227955.html
   My bibliography  Save this article

Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals

Author

Listed:
  • Christin Schröder
  • Luis Alberto Peña Diaz
  • Anna Maria Rohde
  • Brar Piening
  • Seven Johannes Sam Aghdassi
  • Georg Pilarski
  • Norbert Thoma
  • Petra Gastmeier
  • Rasmus Leistner
  • Michael Behnke

Abstract

Introduction: Outbreaks of communicable diseases in hospitals need to be quickly detected in order to enable immediate control. The increasing digitalization of hospital data processing offers potential solutions for automated outbreak detection systems (AODS). Our goal was to assess a newly developed AODS. Methods: Our AODS was based on the diagnostic results of routine clinical microbiological examinations. The system prospectively counted detections per bacterial pathogen over time for the years 2016 and 2017. The baseline data covers data from 2013–2015. The comparative analysis was based on six different mathematical algorithms (normal/Poisson and score prediction intervals, the early aberration reporting system, negative binomial CUSUMs, and the Farrington algorithm). The clusters automatically detected were then compared with the results of our manual outbreak detection system. Results: During the analysis period, 14 different hospital outbreaks were detected as a result of conventional manual outbreak detection. Based on the pathogens’ overall incidence, outbreaks were divided into two categories: outbreaks with rarely detected pathogens (sporadic) and outbreaks with often detected pathogens (endemic). For outbreaks with sporadic pathogens, the detection rate of our AODS ranged from 83% to 100%. Every algorithm detected 6 of 7 outbreaks with a sporadic pathogen. The AODS identified outbreaks with an endemic pathogen were at a detection rate of 33% to 100%. For endemic pathogens, the results varied based on the epidemiological characteristics of each outbreak and pathogen. Conclusion: AODS for hospitals based on routine microbiological data is feasible and can provide relevant benefits for infection control teams. It offers in-time automated notification of suspected pathogen clusters especially for sporadically occurring pathogens. However, outbreaks of endemically detected pathogens need further individual pathogen-specific and setting-specific adjustments.

Suggested Citation

  • Christin Schröder & Luis Alberto Peña Diaz & Anna Maria Rohde & Brar Piening & Seven Johannes Sam Aghdassi & Georg Pilarski & Norbert Thoma & Petra Gastmeier & Rasmus Leistner & Michael Behnke, 2020. "Lean back and wait for the alarm? Testing an automated alarm system for nosocomial outbreaks to provide support for infection control professionals," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0227955
    DOI: 10.1371/journal.pone.0227955
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227955
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227955&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    2. C. P. Farrington & N. J. Andrews & A. D. Beale & M. A. Catchpole, 1996. "A Statistical Algorithm for the Early Detection of Outbreaks of Infectious Disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 159(3), pages 547-563, May.
    3. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    2. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    3. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    4. Xunjie Cheng & Tao Chen & Yang Yang & Jing Yang & Dayan Wang & Guoqing Hu & Yuelong Shu, 2018. "Using an innovative method to develop the threshold of seasonal influenza epidemic in China," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-13, August.
    5. Bianca Cox & Françoise Wuillaume & Herman Oyen & Sophie Maes, 2010. "Monitoring of all-cause mortality in Belgium (Be-MOMO): a new and automated system for the early detection and quantification of the mortality impact of public health events," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(4), pages 251-259, August.
    6. Sergio Di Martino & Sara Romano & Michela Bertolotto & Nattiya Kanhabua & Antonino Mazzeo & Wolfgang Nejdl, 2017. "Towards Exploiting Social Networks for Detecting Epidemic Outbreaks," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(1), pages 61-71, March.
    7. Zhang, Ping & Wang, Jianwen & Atkinson, Peter M., 2019. "Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China," Ecological Modelling, Elsevier, vol. 414(C).
    8. Konstantinos Angelopoulos & Spyridon Lazarakis & Rebecca Mancy & Max Schroeder, 2021. "Pandemic-Induced Wealth and Health Inequality and Risk Exposure," CESifo Working Paper Series 9474, CESifo.
    9. Mikkel Bennedsen, 2021. "Designing a statistical procedure for monitoring global carbon dioxide emissions," Climatic Change, Springer, vol. 166(3), pages 1-19, June.
    10. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    11. Yuta Tanoue & Cyrus Ghaznavi & Takayuki Kawashima & Akifumi Eguchi & Daisuke Yoneoka & Shuhei Nomura, 2022. "Changes in Health Care Access during the COVID-19 Pandemic: Estimates of National Japanese Data, June 2020–October 2021," IJERPH, MDPI, vol. 19(14), pages 1-12, July.
    12. Bagarello, F. & Gargano, F. & Roccati, F., 2020. "Modeling epidemics through ladder operators," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Alex Spanos & George Theocharis & Drosos E Karageorgopoulos & George Peppas & Dimitris Fouskakis & Matthew E Falagas, 2012. "Surveillance of Community Outbreaks of Respiratory Tract Infections Based on House-Call Visits in the Metropolitan Area of Athens, Greece," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-6, August.
    14. Chengcheng Bei & Shiping Liu & Yin Liao & Gaoliang Tian & Zichen Tian, 2021. "Predicting new cases of COVID‐19 and the application to population sustainability analysis," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4859-4884, September.
    15. Wei Wei & Leonhard Held, 2014. "Calibration tests for count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 787-805, December.
    16. Michael Höhle, 2007. "$${\tt surveillance}$$ : An R package for the monitoring of infectious diseases," Computational Statistics, Springer, vol. 22(4), pages 571-582, December.
    17. Santitissadeekorn, Naratip & Lloyd, David J.B. & Short, Martin B. & Delahaies, Sylvain, 2020. "Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    18. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    19. Johan Verbeeck & Christel Faes & Thomas Neyens & Niel Hens & Geert Verbeke & Patrick Deboosere & Geert Molenberghs, 2023. "A linear mixed model to estimate COVID‐19‐induced excess mortality," Biometrics, The International Biometric Society, vol. 79(1), pages 417-425, March.
    20. Yeong-Jun Song & Hae-Kwan Cheong & Myung Ki & Ji-Yeon Shin & Seung-sik Hwang & Mira Park & Moran Ki & Jiseun Lim, 2018. "The Epidemiological Influence of Climatic Factors on Shigellosis Incidence Rates in Korea," IJERPH, MDPI, vol. 15(10), pages 1-9, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.