IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i2p419-440.html
   My bibliography  Save this article

Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster

Author

Listed:
  • Thais Paiva
  • Renato Assunção
  • Taynãna Simões

Abstract

We developed a space–time prospective surveillance method when the data are point events, monitoring if there is an emerging cluster. Typical application areas are crime or disease surveillance. At each new event, a local Knox score is calculated and spatially spread to form a stochastic surface. The surfaces are accumulated sequentially until they exceed a specified threshold, causing an alarm to go off and identify the region of the probable cluster. The method requires little prior knowledge from the user and provides a way to identify locations and time of possible clusters, through the visualization of the cumulative surface. We present a simulation study for different cluster scenarios, as well as an application to a dataset of meningitis cases in Belo Horizonte, Brazil. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:2:p:419-440
    DOI: 10.1007/s00180-014-0541-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0541-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0541-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.
    2. Christian Sonesson & David Bock, 2003. "A review and discussion of prospective statistical surveillance in public health," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 5-21, February.
    3. Peter A. Rogerson, 2001. "Monitoring point patterns for the development of space–time clusters," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 87-96.
    4. Steffen Unkel & C. Paddy Farrington & Paul H. Garthwaite & Chris Robertson & Nick Andrews, 2012. "Statistical methods for the prospective detection of infectious disease outbreaks: a review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(1), pages 49-82, January.
    5. Martin Kulldorff & Ulf Hjalmars, 1999. "The Knox Method and Other Tests for Space-Time Interaction," Biometrics, The International Biometric Society, vol. 55(2), pages 544-552, June.
    6. Martin Kulldorff, 2001. "Prospective time periodic geographical disease surveillance using a scan statistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 61-72.
    7. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianne Frisén, 2014. "Spatial outbreak detection based on inference principles for multivariate surveillance," IISE Transactions, Taylor & Francis Journals, vol. 46(8), pages 759-769, August.
    2. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    3. Alexandre Rodrigues & Peter J. Diggle, 2012. "Bayesian Estimation and Prediction for Inhomogeneous Spatiotemporal Log-Gaussian Cox Processes Using Low-Rank Models, With Application to Criminal Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 93-101, March.
    4. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    5. Doyo G Enki & Paul H Garthwaite & C Paddy Farrington & Angela Noufaily & Nick J Andrews & Andre Charlett, 2016. "Comparison of Statistical Algorithms for the Detection of Infectious Disease Outbreaks in Large Multiple Surveillance Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-25, August.
    6. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
    7. Jingnan Zhang & Yicheng Kang & Yang Yang & Peihua Qiu, 2015. "Statistical monitoring of the hand, foot and mouth disease in China," Biometrics, The International Biometric Society, vol. 71(3), pages 841-850, September.
    8. Chih-Chieh Wu & Chien-Hsiun Chen & Sanjay Shete, 2017. "Assessing current temporal and space-time anomalies of disease incidence," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-10, November.
    9. Assuno, Renato & Correa, Thais, 2009. "Surveillance to detect emerging space-time clusters," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2817-2830, June.
    10. de Lima, Max Sousa & Duczmal, Luiz Henrique, 2014. "Adaptive likelihood ratio approaches for the detection of space–time disease clusters," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 352-370.
    11. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    12. Toshiro Tango & Kunihiko Takahashi & Kazuaki Kohriyama, 2011. "A Space–Time Scan Statistic for Detecting Emerging Outbreaks," Biometrics, The International Biometric Society, vol. 67(1), pages 106-115, March.
    13. William H. Woodall & J Brooke Marshall & Michael D. Joner Jr & Shannon E Fraker & Abdel‐Salam G Abdel‐Salam, 2008. "On the use and evaluation of prospective scan methods for health‐related surveillance," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 223-237, January.
    14. Frisén, Marianne & Andersson, Eva, 2008. "Semiparametric surveillance of outbreaks," Research Reports 2007:11, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    15. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    16. Frisén, Marianne, 2011. "Methods and evaluations for surveillance in industry, business, finance, and public health," Research Reports 2011:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    17. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    18. Dong Ding & Axel Gandy & Georg Hahn, 2020. "A simple method for implementing Monte Carlo tests," Computational Statistics, Springer, vol. 35(3), pages 1373-1392, September.
    19. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    20. Bock, David & Pettersson, Kjell, 2007. "Explorative analysis of spatial aspects on the Swedish influenza data," Research Reports 2007:10, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:2:p:419-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.