IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305865.html
   My bibliography  Save this article

A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images

Author

Listed:
  • Panwar, Harsh
  • Gupta, P.K.
  • Siddiqui, Mohammad Khubeb
  • Morales-Menendez, Ruben
  • Bhardwaj, Prakhar
  • Singh, Vaishnavi

Abstract

The world is suffering from an existential global health crisis known as the COVID-19 pandemic. Countries like India, Bangladesh, and other developing countries are still having a slow pace in the detection of COVID-19 cases. Therefore, there is an urgent need for fast detection with clear visualization of infection is required using which a suspected patient of COVID-19 could be saved. In the recent technological advancements, the fusion of deep learning classifiers and medical images provides more promising results corresponding to traditional RT-PCR testing while making detection and predictions about COVID-19 cases with increased accuracy. In this paper, we have proposed a deep transfer learning algorithm that accelerates the detection of COVID-19 cases by using X-ray and CT-Scan images of the chest. It is because, in COVID-19, initial screening of chest X-ray (CXR) may provide significant information in the detection of suspected COVID-19 cases. We have considered three datasets known as 1) COVID-chest X-ray, 2) SARS-COV-2 CT-scan, and 3) Chest X-Ray Images (Pneumonia). In the obtained results, the proposed deep learning model can detect the COVID-19 positive cases in ≤ 2 seconds which is faster than RT-PCR tests currently being used for detection of COVID-19 cases. We have also established a relationship between COVID-19 patients along with the Pneumonia patients which explores the pattern between Pneumonia and COVID-19 radiology images. In all the experiments, we have used the Grad-CAM based color visualization approach in order to clearly interpretate the detection of radiology images and taking further course of action.

Suggested Citation

  • Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Bhardwaj, Prakhar & Singh, Vaishnavi, 2020. "A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305865
    DOI: 10.1016/j.chaos.2020.110190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Djilali, Salih & Ghanbari, Behzad, 2020. "Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Singh, Vaishnavi, 2020. "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Nadeem Ashraf & Muhammad Hussain & Zulfiqar Habib, 2022. "Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
    2. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Canayaz, Murat, 2021. "C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Ahatsham Hayat & Preety Baglat & Fábio Mendonça & Sheikh Shanawaz Mostafa & Fernando Morgado-Dias, 2023. "Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    5. Muhammad Aasem & Muhammad Javed Iqbal & Iftikhar Ahmad & Madini O. Alassafi & Ahmed Alhomoud, 2022. "A Survey on Tools and Techniques for Localizing Abnormalities in X-ray Images Using Deep Learning," Mathematics, MDPI, vol. 10(24), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    3. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    7. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    10. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    11. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
    12. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    13. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    16. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    17. Swapnarekha, H. & Behera, Himansu Sekhar & Nayak, Janmenjoy & Naik, Bighnaraj, 2020. "Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    20. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.