IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0250029.html
   My bibliography  Save this article

The first wave of the SARS-CoV-2 epidemic in Tuscany (Italy): A SI2R2D compartmental model with uncertainty evaluation

Author

Listed:
  • Michela Baccini
  • Giulia Cereda
  • Cecilia Viscardi

Abstract

With the aim of studying the spread of the SARS-CoV-2 infection in the Tuscany region of Italy during the first epidemic wave (February-June 2020), we define a compartmental model that accounts for both detected and undetected infections and assumes that only notified cases can die. We estimate the infection fatality rate, the case fatality rate, and the basic reproduction number, modeled as a time-varying function, by calibrating on the cumulative daily number of observed deaths and notified infected, after fixing to plausible values the other model parameters to assure identifiability. The confidence intervals are estimated by a parametric bootstrap procedure and a Global Sensitivity Analysis is performed to assess the sensitivity of the estimates to changes in the values of the fixed parameters. According to our results, the basic reproduction number drops from an initial value of 6.055 to 0 at the end of the national lockdown, then it grows again, but remaining under 1. At the beginning of the epidemic, the case and the infection fatality rates are estimated to be 13.1% and 2.3%, respectively. Among the parameters considered as fixed, the average time from infection to recovery for the not notified infected appears to be the most impacting one on the model estimates. The probability for an infected to be notified has a relevant impact on the infection fatality rate and on the shape of the epidemic curve. This stresses the need of collecting information on these parameters to better understand the phenomenon and get reliable predictions.

Suggested Citation

  • Michela Baccini & Giulia Cereda & Cecilia Viscardi, 2021. "The first wave of the SARS-CoV-2 epidemic in Tuscany (Italy): A SI2R2D compartmental model with uncertainty evaluation," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0250029
    DOI: 10.1371/journal.pone.0250029
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0250029
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0250029&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0250029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Oluwaseun Sharomi & Tufail Malik, 2017. "Optimal control in epidemiology," Annals of Operations Research, Springer, vol. 251(1), pages 55-71, April.
    3. Gaeta, Giuseppe, 2020. "Social distancing versus early detection and contacts tracing in epidemic management," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. František Božek & Irena Tušer, 2021. "Measures for Ensuring Sustainability during the Current Spreading of Coronaviruses in the Czech Republic," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    2. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "A SIR model assumption for the spread of COVID-19 in different communities," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    5. Song, Jialu & Xie, Hujin & Gao, Bingbing & Zhong, Yongmin & Gu, Chengfan & Choi, Kup-Sze, 2021. "Maximum likelihood-based extended Kalman filter for COVID-19 prediction," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    6. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    8. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    9. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
    10. Sharbayta, Sileshi Sintayehu & Buonomo, Bruno & d'Onofrio, Alberto & Abdi, Tadesse, 2022. "‘Period doubling’ induced by optimal control in a behavioral SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    15. Swapnarekha, H. & Behera, Himansu Sekhar & Nayak, Janmenjoy & Naik, Bighnaraj, 2020. "Role of intelligent computing in COVID-19 prognosis: A state-of-the-art review," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    16. Aguilar-Canto, Fernando Javier & de León, Ugo Avila-Ponce & Avila-Vales, Eric, 2022. "Sensitivity theorems of a model of multiple imperfect vaccines for COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    17. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    18. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
    19. Reis, Ruy Freitas & de Melo Quintela, Bárbara & de Oliveira Campos, Joventino & Gomes, Johnny Moreira & Rocha, Bernardo Martins & Lobosco, Marcelo & Weber dos Santos, Rodrigo, 2020. "Characterization of the COVID-19 pandemic and the impact of uncertainties, mitigation strategies, and underreporting of cases in South Korea, Italy, and Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    20. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0250029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.