IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p686-d756177.html
   My bibliography  Save this article

Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy

Author

Listed:
  • Muhammad Nadeem Ashraf

    (Department of Computer Science, COMSATS University Islamabad, Lahore 54700, Pakistan
    Department of Computer Science and Information Technology, The University of Lahore, Lahore 54000, Pakistan)

  • Muhammad Hussain

    (Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia)

  • Zulfiqar Habib

    (Department of Computer Science, COMSATS University Islamabad, Lahore 54700, Pakistan)

Abstract

Diabetic retinopathy (DR) is an asymptotic and vision-threatening complication among working-age adults. To prevent blindness, a deep convolutional neural network (CNN) based diagnosis can help to classify less-discriminative and small-sized red lesions in early screening of DR patients. However, training deep models with minimal data is a challenging task. Fine-tuning through transfer learning is a useful alternative, but performance degradation, overfitting, and domain adaptation issues further demand architectural amendments to effectively train deep models. Various pre-trained CNNs are fine-tuned on an augmented set of image patches. The best-performing ResNet50 model is modified by introducing reinforced skip connections, a global max-pooling layer, and the sum-of-squared-error loss function. The performance of the modified model (DR-ResNet50) on five public datasets is found to be better than state-of-the-art methods in terms of well-known metrics. The highest scores (0.9851, 0.991, 0.991, 0.991, 0.991, 0.9939, 0.0029, 0.9879, and 0.9879) for sensitivity, specificity, AUC, accuracy, precision, F1-score, false-positive rate, Matthews’s correlation coefficient, and kappa coefficient are obtained within a 95% confidence interval for unseen test instances from e-Ophtha_MA. This high sensitivity and low false-positive rate demonstrate the worth of a proposed framework. It is suitable for early screening due to its performance, simplicity, and robustness.

Suggested Citation

  • Muhammad Nadeem Ashraf & Muhammad Hussain & Zulfiqar Habib, 2022. "Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:686-:d:756177
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Bhardwaj, Prakhar & Singh, Vaishnavi, 2020. "A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Mike Voets & Kajsa Møllersen & Lars Ailo Bongo, 2019. "Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Muhammad Aasem & Muhammad Javed Iqbal & Iftikhar Ahmad & Madini O. Alassafi & Ahmed Alhomoud, 2022. "A Survey on Tools and Techniques for Localizing Abnormalities in X-ray Images Using Deep Learning," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    3. Ahatsham Hayat & Preety Baglat & Fábio Mendonça & Sheikh Shanawaz Mostafa & Fernando Morgado-Dias, 2023. "Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    4. Canayaz, Murat, 2021. "C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:686-:d:756177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.