IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v151y2021ics0960077921006640.html
   My bibliography  Save this article

C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet

Author

Listed:
  • Canayaz, Murat

Abstract

COVID-19, one of the biggest diseases of our age, continues to spread rapidly around the world. Studies continue rapidly for the diagnosis and treatment of this disease. It is of great importance that individuals who are infected with this virus be isolated from the rest of the society so that the disease does not spread further. In addition to the tests performed in the detection process of the patients, X-ray and computed tomography are also used. In this study, a new hybrid model that can diagnose COVID-19 from computed tomography images created using EfficientNet, one of the current deep learning models, with a model consisting of attention blocks is proposed. In the first step of this new model, channel attention, spatial attention, and residual blocks are used to extract the most important features from the images. The extracted features are combined in accordance with the hyper-column technique. The combined features are given as input to the EfficientNet models in the second step of the model. The deep features obtained from this proposed hybrid model were classified with the Support Vector Machine classifier after feature selection. Principal Components Analysis was used for feature selection. The approach can accurately predict COVID-19 with a 99% accuracy rate. The first four versions of EfficientNet are used in the approach. In addition, Bayesian optimization was used in the hyper parameter estimation of the Support Vector Machine classifier. Comparative performance analysis of the approach with other approaches in the field is given.

Suggested Citation

  • Canayaz, Murat, 2021. "C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006640
    DOI: 10.1016/j.chaos.2021.111310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921006640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Bhardwaj, Prakhar & Singh, Vaishnavi, 2020. "A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Toğaçar, Mesut & Özkurt, Kutsal Baran & Ergen, Burhan & Cömert, Zafer, 2020. "BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahatsham Hayat & Preety Baglat & Fábio Mendonça & Sheikh Shanawaz Mostafa & Fernando Morgado-Dias, 2023. "Novel Comparative Study for the Detection of COVID-19 Using CT Scan and Chest X-ray Images," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    2. Muhammad Nadeem Ashraf & Muhammad Hussain & Zulfiqar Habib, 2022. "Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
    3. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Muhammad Aasem & Muhammad Javed Iqbal & Iftikhar Ahmad & Madini O. Alassafi & Ahmed Alhomoud, 2022. "A Survey on Tools and Techniques for Localizing Abnormalities in X-ray Images Using Deep Learning," Mathematics, MDPI, vol. 10(24), pages 1-29, December.
    5. Toğaçar, Mesut & Cömert, Zafer & Ergen, Burhan, 2021. "Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:151:y:2021:i:c:s0960077921006640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.