IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics096007792030549x.html
   My bibliography  Save this article

Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans

Author

Listed:
  • Yan, Tao
  • Wong, Pak Kin
  • Ren, Hao
  • Wang, Huaqiao
  • Wang, Jiangtao
  • Li, Yang

Abstract

The COVID-19 pneumonia is a global threat since it emerged in early December 2019. Driven by the desire to develop a computer-aided system for the rapid diagnosis of COVID-19 to assist radiologists and clinicians to combat with this pandemic, we retrospectively collected 206 patients with positive reverse-transcription polymerase chain reaction (RT-PCR) for COVID-19 and their 416 chest computed tomography (CT) scans with abnormal findings from two hospitals, 412 non-COVID-19 pneumonia and their 412 chest CT scans with clear sign of pneumonia are also retrospectively selected from participating hospitals. Based on these CT scans, we design an artificial intelligence (AI) system that uses a multi-scale convolutional neural network (MSCNN) and evaluate its performance at both slice level and scan level. Experimental results show that the proposed AI has promising diagnostic performance in the detection of COVID-19 and differentiating it from other common pneumonia under limited number of training data, which has great potential to assist radiologists and physicians in performing a quick diagnosis and mitigate the heavy workload of them especially when the health system is overloaded. The data is publicly available for further research at https://data.mendeley.com/datasets/3y55vgckg6/1https://data.mendeley.com/datasets/3y55vgckg6/1.

Suggested Citation

  • Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s096007792030549x
    DOI: 10.1016/j.chaos.2020.110153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792030549X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Singh, Vaishnavi, 2020. "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Guixia Kang & Kui Liu & Beibei Hou & Ningbo Zhang, 2017. "3D multi-view convolutional neural networks for lung nodule classification," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
    3. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Pasquale Cascarano & Giorgia Franchini & Erich Kobler & Federica Porta & Andrea Sebastiani, 2023. "Constrained and unconstrained deep image prior optimization models with automatic regularization," Computational Optimization and Applications, Springer, vol. 84(1), pages 125-149, January.
    5. Wei, Mengke & Han, Xiujing & Bi, Qinsheng, 2022. "Sufficient conditions and criteria for the pulse-shaped explosion related to equilibria in a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Chang Hee Han & Misuk Kim & Jin Tae Kwak, 2021. "Semi-supervised learning for an improved diagnosis of COVID-19 in CT images," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    2. Jonathan S. Talahua & Jorge Buele & P. Calvopiña & José Varela-Aldás, 2021. "Facial Recognition System for People with and without Face Mask in Times of the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    5. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    6. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    7. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    8. Dingding Wang & Jiaqing Mo & Gang Zhou & Liang Xu & Yajun Liu, 2020. "An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-15, November.
    9. Prabhjot Kaur & Shilpi Harnal & Rajeev Tiwari & Fahd S. Alharithi & Ahmed H. Almulihi & Irene Delgado Noya & Nitin Goyal, 2021. "A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    10. Siyuan Tang & Min Yang & Jinniu Bai, 2020. "Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-27, August.
    11. Mohammad Khishe & Fabio Caraffini & Stefan Kuhn, 2021. "Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    12. Yao, Haitang & Liu, Wei & Wu, Chia-Huei & Yuan, Yu-Hsi, 2022. "The imprinting effect of SARS experience on the fear of COVID-19: The role of AI and big data," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    13. Wajdi Aljedaani & Eysha Saad & Furqan Rustam & Isabel de la Torre Díez & Imran Ashraf, 2022. "Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends," Mathematics, MDPI, vol. 10(17), pages 1-33, September.
    14. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Bhardwaj, Prakhar & Singh, Vaishnavi, 2020. "A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Ben-Loghfyry, Anouar & Charkaoui, Abderrahim, 2023. "Regularized Perona & Malik model involving Caputo time-fractional derivative with application to image denoising," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Karime Chahuán-Jiménez & Rolando Rubilar-Torrealba & Hanns de la Fuente-Mella, 2021. "Market Openness and Its Relationship to Connecting Markets Due to COVID-19," Sustainability, MDPI, vol. 13(19), pages 1-12, October.
    17. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    18. Marcel Lucas Chee & Marcus Eng Hock Ong & Fahad Javaid Siddiqui & Zhongheng Zhang & Shir Lynn Lim & Andrew Fu Wah Ho & Nan Liu, 2021. "Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-15, April.
    19. Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
    20. Wang, Lingxiao & Hare, Brian M. & Zhou, Kai & Stöcker, Horst & Scholten, Olaf, 2023. "Identifying lightning structures via machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s096007792030549x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.