IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i22p12191-d683984.html
   My bibliography  Save this article

A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images

Author

Listed:
  • Prabhjot Kaur

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

  • Shilpi Harnal

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

  • Rajeev Tiwari

    (Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

  • Fahd S. Alharithi

    (Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia)

  • Ahmed H. Almulihi

    (Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia)

  • Irene Delgado Noya

    (Higher Polytechnic School/Industrial Organization Engineering, Universidad Europea del Atlántico, 39011 Santander, Spain
    Department of Project Management, Universidad Internacional Iberoamericana, Campeche 24560, Mexico)

  • Nitin Goyal

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

Abstract

COVID-19 declared as a pandemic that has a faster rate of infection and has impacted the lives and the country’s economy due to forced lockdowns. Its detection using RT-PCR is required long time and due to which its infection has grown exponentially. This creates havoc for the shortage of testing kits in many countries. This work has proposed a new image processing-based technique for the health care systems named “C19D-Net”, to detect “COVID-19” infection from “Chest X-Ray” (XR) images, which can help radiologists to improve their accuracy of detection COVID-19. The proposed system extracts deep learning (DL) features by applying the InceptionV4 architecture and Multiclass SVM classifier to classify and detect COVID-19 infection into four different classes. The dataset of 1900 Chest XR images has been collected from two publicly accessible databases. Images are pre-processed with proper scaling and regular feeding to the proposed model for accuracy attainments. Extensive tests are conducted with the proposed model (“C19D-Net”) and it has succeeded to achieve the highest COVID-19 detection accuracy as 96.24% for 4-classes, 95.51% for three-classes, and 98.1% for two-classes. The proposed method has outperformed well in expressions of “precision”, “accuracy”, “F1-score” and “recall” in comparison with most of the recent previously published methods. As a result, for the present situation of COVID-19, the proposed “C19D-Net” can be employed in places where test kits are in short supply, to help the radiologists to improve their accuracy of detection of COVID-19 patients through XR-Images.

Suggested Citation

  • Prabhjot Kaur & Shilpi Harnal & Rajeev Tiwari & Fahd S. Alharithi & Ahmed H. Almulihi & Irene Delgado Noya & Nitin Goyal, 2021. "A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:12191-:d:683984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/22/12191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/22/12191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Singh, Vaishnavi, 2020. "Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    2. Mustafa Abdul Salam & Sanaa Taha & Mohamed Ramadan, 2021. "COVID-19 detection using federated machine learning," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    3. Dingding Wang & Jiaqing Mo & Gang Zhou & Liang Xu & Yajun Liu, 2020. "An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-15, November.
    4. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Toraman, Suat & Alakus, Talha Burak & Turkoglu, Ibrahim, 2020. "Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Mohammad Khishe & Fabio Caraffini & Stefan Kuhn, 2021. "Evolving Deep Learning Convolutional Neural Networks for Early COVID-19 Detection in Chest X-ray Images," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
    7. Panwar, Harsh & Gupta, P.K. & Siddiqui, Mohammad Khubeb & Morales-Menendez, Ruben & Bhardwaj, Prakhar & Singh, Vaishnavi, 2020. "A deep learning and grad-CAM based color visualization approach for fast detection of COVID-19 cases using chest X-ray and CT-Scan images," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Jonathan S. Talahua & Jorge Buele & P. Calvopiña & José Varela-Aldás, 2021. "Facial Recognition System for People with and without Face Mask in Times of the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Ben-Loghfyry, Anouar & Charkaoui, Abderrahim, 2023. "Regularized Perona & Malik model involving Caputo time-fractional derivative with application to image denoising," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Mazhar Javed Awan & Muhammad Haseeb Bilal & Awais Yasin & Haitham Nobanee & Nabeel Sabir Khan & Azlan Mohd Zain, 2021. "Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach," IJERPH, MDPI, vol. 18(19), pages 1-16, September.
    11. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:22:p:12191-:d:683984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.