IDEAS home Printed from https://ideas.repec.org/a/spr/decisn/v48y2021i4d10.1007_s40622-021-00289-3.html
   My bibliography  Save this article

The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review

Author

Listed:
  • Sini V. Pillai

    (CET School of Management)

  • Ranjith S. Kumar

    (College of Engineering Trivandrum)

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease with acute intense respiratory syndrome which spread around the world for the very first time impacting the way of life with drastic uncertainty. It rapidly reached almost every nook and corner of the world and the World Health Organization (WHO) has announced COVID-19 as a pandemic. The health care institutions around the globe are looking for viable and real-time technological solutions to handle the virus for evading its spread and circumvent probable demises. Importantly, the artificial intelligence tools and techniques are playing a major role in fighting the effect of virus on the economic jolt by mimicking human intelligence by screening, analyzing, predicting and tracking the existing and likely future patients. Since the first reported case, all the government organizations in the world jumped into action to prevent it and many studies reported the role of AI in taking decisions analyzing big data available in public sphere. Thereby, this review focuses on identifying the significant implication of AI techniques used for the COVID-19 disease management in the public sphere by agglomerating the latest available information. It also discusses the pitfalls and future directions in handling sensitive big data required for advanced neural networks.

Suggested Citation

  • Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
  • Handle: RePEc:spr:decisn:v:48:y:2021:i:4:d:10.1007_s40622-021-00289-3
    DOI: 10.1007/s40622-021-00289-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40622-021-00289-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40622-021-00289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuziemski, Maciej & Misuraca, Gianluca, 2020. "AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings," Telecommunications Policy, Elsevier, vol. 44(6).
    2. Solomon Hsiang & Daniel Allen & Sébastien Annan-Phan & Kendon Bell & Ian Bolliger & Trinetta Chong & Hannah Druckenmiller & Luna Yue Huang & Andrew Hultgren & Emma Krasovich & Peiley Lau & Jaecheol Le, 2020. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic," Nature, Nature, vol. 584(7820), pages 262-267, August.
    3. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Sathian Dananjayan & Gerard Marshall Raj, 2020. "Artificial Intelligence during a pandemic: The COVID‐19 example," International Journal of Health Planning and Management, Wiley Blackwell, vol. 35(5), pages 1260-1262, September.
    5. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    2. Marco Colagrossi & Claudio Deiana & Andrea Geraci & Ludovica Giua, 2022. "Hang up on stereotypes: Domestic violence and an anti‐abuse helpline campaign," Contemporary Economic Policy, Western Economic Association International, vol. 40(4), pages 585-611, October.
    3. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    4. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    6. Davide Furceri & Siddharth Kothari & Longmei Zhang, 2021. "The effects of COVID‐19 containment measures on the Asia‐Pacific region," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 469-497, October.
    7. Zhang, Weidong & Zuo, Na & He, Wu & Li, Songtao & Yu, Lu, 2021. "Factors influencing the use of artificial intelligence in government: Evidence from China," Technology in Society, Elsevier, vol. 66(C).
    8. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    9. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.
    10. Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024. "Four Stylized Facts About Covid‐19," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
    11. Maxim Ananyev & Michael Poyker & Yuan Tian, 2021. "The safest time to fly: pandemic response in the era of Fox News," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(3), pages 775-802, July.
    12. Matthew Spiegel & Heather Tookes, 2021. "Business Restrictions and COVID-19 Fatalities [The immediate effect of COVID-19 policies on social distancing behavior in the United States]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5266-5308.
    13. Borsati, Mattia & Nocera, Silvio & Percoco, Marco, 2022. "Questioning the spatial association between the initial spread of COVID-19 and transit usage in Italy," Research in Transportation Economics, Elsevier, vol. 95(C).
    14. Dhaval Dave & Drew McNichols & Joseph J. Sabia, 2022. "Political violence, risk aversion, and population health: Evidence from the US Capitol riot," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1345-1384, October.
    15. Daniele Proverbio & Françoise Kemp & Stefano Magni & Jorge Gonçalves, 2022. "Performance of early warning signals for disease re-emergence: A case study on COVID-19 data," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-22, March.
    16. Edoardo Di Porto & Paolo Naticchioni & Vincenzo Scrutinio, 2020. "Partial Lockdown and the Spread of Covid-19: Lessons from the Italian Case," CSEF Working Papers 569, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    17. Ho Fai Chan & Martin Brumpton & Alison Macintyre & Jefferson Arapoc & David A Savage & Ahmed Skali & David Stadelmann & Benno Torgler, 2020. "How confidence in health care systems affects mobility and compliance during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    18. Alexander Karaivanov & Dongwoo Kim & Shih En Lu & Hitoshi Shigeoka, 2022. "COVID-19 vaccination mandates and vaccine uptake," Nature Human Behaviour, Nature, vol. 6(12), pages 1615-1624, December.
    19. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    20. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decisn:v:48:y:2021:i:4:d:10.1007_s40622-021-00289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.