IDEAS home Printed from https://ideas.repec.org/a/spr/decisn/v48y2021i4d10.1007_s40622-021-00289-3.html
   My bibliography  Save this article

The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review

Author

Listed:
  • Sini V. Pillai

    (CET School of Management)

  • Ranjith S. Kumar

    (College of Engineering Trivandrum)

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease with acute intense respiratory syndrome which spread around the world for the very first time impacting the way of life with drastic uncertainty. It rapidly reached almost every nook and corner of the world and the World Health Organization (WHO) has announced COVID-19 as a pandemic. The health care institutions around the globe are looking for viable and real-time technological solutions to handle the virus for evading its spread and circumvent probable demises. Importantly, the artificial intelligence tools and techniques are playing a major role in fighting the effect of virus on the economic jolt by mimicking human intelligence by screening, analyzing, predicting and tracking the existing and likely future patients. Since the first reported case, all the government organizations in the world jumped into action to prevent it and many studies reported the role of AI in taking decisions analyzing big data available in public sphere. Thereby, this review focuses on identifying the significant implication of AI techniques used for the COVID-19 disease management in the public sphere by agglomerating the latest available information. It also discusses the pitfalls and future directions in handling sensitive big data required for advanced neural networks.

Suggested Citation

  • Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
  • Handle: RePEc:spr:decisn:v:48:y:2021:i:4:d:10.1007_s40622-021-00289-3
    DOI: 10.1007/s40622-021-00289-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40622-021-00289-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40622-021-00289-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuziemski, Maciej & Misuraca, Gianluca, 2020. "AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings," Telecommunications Policy, Elsevier, vol. 44(6).
    2. Solomon Hsiang & Daniel Allen & Sébastien Annan-Phan & Kendon Bell & Ian Bolliger & Trinetta Chong & Hannah Druckenmiller & Luna Yue Huang & Andrew Hultgren & Emma Krasovich & Peiley Lau & Jaecheol Le, 2020. "The effect of large-scale anti-contagion policies on the COVID-19 pandemic," Nature, Nature, vol. 584(7820), pages 262-267, August.
    3. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Sathian Dananjayan & Gerard Marshall Raj, 2020. "Artificial Intelligence during a pandemic: The COVID‐19 example," International Journal of Health Planning and Management, Wiley Blackwell, vol. 35(5), pages 1260-1262, September.
    5. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wright, Austin L. & Sonin, Konstantin & Driscoll, Jesse & Wilson, Jarnickae, 2020. "Poverty and economic dislocation reduce compliance with COVID-19 shelter-in-place protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 544-554.
    2. Marco Colagrossi & Claudio Deiana & Andrea Geraci & Ludovica Giua, 2022. "Hang up on stereotypes: Domestic violence and an anti‐abuse helpline campaign," Contemporary Economic Policy, Western Economic Association International, vol. 40(4), pages 585-611, October.
    3. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    4. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    5. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    6. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    7. Wang, Peipei & Liu, Haiyan & Zheng, Xinqi & Ma, Ruifang, 2023. "A new method for spatio-temporal transmission prediction of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.
    10. Davide Furceri & Siddharth Kothari & Longmei Zhang, 2021. "The effects of COVID‐19 containment measures on the Asia‐Pacific region," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 469-497, October.
    11. Jae-Eun Lee & Seol-A Kwon, 2021. "A Study on the Public’s Crisis Management Efficacy and Anxiety in a Pandemic Situation—Focusing on the COVID-19 Pandemic in South Korea," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    12. Richard Bluhm & Maxim Pinkovskiy, 2021. "The spread of COVID-19 and the BCG vaccine: A natural experiment in reunified Germany," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 353-376.
    13. Hausmann, Ricardo & Schetter, Ulrich, 2022. "Horrible trade-offs in a pandemic: Poverty, fiscal space, policy, and welfare," World Development, Elsevier, vol. 153(C).
    14. Zhang, Weidong & Zuo, Na & He, Wu & Li, Songtao & Yu, Lu, 2021. "Factors influencing the use of artificial intelligence in government: Evidence from China," Technology in Society, Elsevier, vol. 66(C).
    15. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    16. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    17. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Tan Yigitcanlar & Rashid Mehmood & Juan M. Corchado, 2021. "Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    19. Xu, Chang & Jin, Long, 2024. "Effects of government digitalization on firm investment efficiency: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 819-834.
    20. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decisn:v:48:y:2021:i:4:d:10.1007_s40622-021-00289-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.