IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v84y2023i1d10.1007_s10589-022-00392-w.html
   My bibliography  Save this article

Constrained and unconstrained deep image prior optimization models with automatic regularization

Author

Listed:
  • Pasquale Cascarano

    (University of Bologna)

  • Giorgia Franchini

    (University of Modena and Reggio Emilia)

  • Erich Kobler

    (University of Linz)

  • Federica Porta

    (University of Modena and Reggio Emilia)

  • Andrea Sebastiani

    (University of Bologna)

Abstract

Deep Image Prior (DIP) is currently among the most efficient unsupervised deep learning based methods for ill-posed inverse problems in imaging. This novel framework relies on the implicit regularization provided by representing images as the output of generative Convolutional Neural Network (CNN) architectures. So far, DIP has been shown to be an effective approach when combined with classical and novel regularizers. Unfortunately, to obtain appropriate solutions, all the models proposed up to now require an accurate estimate of the regularization parameter. To overcome this difficulty, we consider a locally adapted regularized unconstrained model whose local regularization parameters are automatically estimated for additively separable regularizers. Moreover, we propose a novel constrained formulation in analogy to Morozov’s discrepancy principle which enables the application of a broader range of regularizers. Both the unconstrained and the constrained models are solved via the proximal gradient descent-ascent method. Numerical results demonstrate the robustness with respect to image content, noise levels and hyperparameters of the proposed models on both denoising and deblurring of simulated as well as real natural and medical images.

Suggested Citation

  • Pasquale Cascarano & Giorgia Franchini & Erich Kobler & Federica Porta & Andrea Sebastiani, 2023. "Constrained and unconstrained deep image prior optimization models with automatic regularization," Computational Optimization and Applications, Springer, vol. 84(1), pages 125-149, January.
  • Handle: RePEc:spr:coopap:v:84:y:2023:i:1:d:10.1007_s10589-022-00392-w
    DOI: 10.1007/s10589-022-00392-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00392-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00392-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
    4. Chang Hee Han & Misuk Kim & Jin Tae Kwak, 2021. "Semi-supervised learning for an improved diagnosis of COVID-19 in CT images," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-13, April.
    5. Wei, Mengke & Han, Xiujing & Bi, Qinsheng, 2022. "Sufficient conditions and criteria for the pulse-shaped explosion related to equilibria in a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:84:y:2023:i:1:d:10.1007_s10589-022-00392-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.