IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics0960077920302174.html
   My bibliography  Save this article

Suppression of switching errors in weakly damped Josephson junctions

Author

Listed:
  • Yablokov, A.A.
  • Mylnikov, V.M.
  • Pankratov, A.L.
  • Pankratova, E.V.
  • Gordeeva, A.V.

Abstract

The task of the Josephson junction switching is numerically solved in the framework of the classical RCSJ model with white Gaussian noise. In order to switch the junction to the resistive state a periodic supra-threshold signal is applied. The operational mode is similar to the single photon counter proposed earlier. Here we consider a purely classical situation in order to find out how far the typical aluminium Josephson junction is from the single photon operational mode. We have found that for the considered parameters, if the switching happens due to external periodic signal, it occurs mostly during the first two periods of driving, and the number of photons, needed for switching, is more than one hundred. Also we observe the double minima of the mean switching time and the standard deviation versus the driving frequency. This determines the parameter range, optimal for reliable switching, which can be used as a guidance in quasi-classical and quantum approaches.

Suggested Citation

  • Yablokov, A.A. & Mylnikov, V.M. & Pankratov, A.L. & Pankratova, E.V. & Gordeeva, A.V., 2020. "Suppression of switching errors in weakly damped Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302174
    DOI: 10.1016/j.chaos.2020.109817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. E. V. Pankratova & V. N. Belykh & E. Mosekilde, 2006. "Role of the driving frequency in a randomly perturbed Hodgkin-Huxley neuron with suprathreshold forcing," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(4), pages 529-536, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Pankratov, Andrey L. & Ladeynov, Dmitry A. & Revin, Leonid S. & Gordeeva, Anna V. & Il’ichev, Evgeny V., 2024. "Quantum and phase diffusion crossovers in small Al Josephson junctions," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    5. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Ladeynov, D.A. & Egorov, D.G. & Pankratov, A.L., 2023. "Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Duan, Wei-Long, 2020. "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Ladeynov, D.A. & Egorov, D.G. & Pankratov, A.L., 2023. "Stochastic versus dynamic resonant activation to enhance threshold detector sensitivity," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    4. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    5. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    8. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    10. Andreeva, N.V. & Turalchuk, P.A. & Chigirev, D.A. & Vendik, I.B. & Ryndin, E.A. & Luchinin, V.V., 2021. "Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    11. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Chen, Ruyin & Xiong, Yue & Li, Zekun & He, Zhifen & Hou, Fang & Zhou, Jiawei, 2022. "Effects of correlated noises on binocular rivalry," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    13. Filip Simeski & Arnout M. P. Boelens & Matthias Ihme, 2020. "Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments," Energies, MDPI, vol. 13(22), pages 1-17, November.
    14. Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    15. Guarcello, C. & Bergeret, F.S., 2021. "Thermal noise effects on the magnetization switching of a ferromagnetic anomalous Josephson junction," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Xu, Pengfei & Jin, Yanfei, 2020. "Coherence and stochastic resonance in a second-order asymmetric tri-stable system with memory effects," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    17. Zhevnenko, D. & Meshchaninov, F. & Kozhevnikov, V. & Shamin, E. & Belov, A. & Gerasimova, S. & Guseinov, D. & Mikhaylov, A. & Gornev, E., 2021. "Simulation of memristor switching time series in response to spike-like signal," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Dong, Haitao & Shen, Xiaohong & He, Ke & Wang, Haiyan, 2020. "Nonlinear filtering effects of intrawell matched stochastic resonance with barrier constrainted duffing system for ship radiated line signature extraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    20. Duan, Wei-Long & Lin, Ling, 2021. "Noise and delay enhanced stability in tumor-immune responses to chemotherapy system," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.