IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v132y2020ics0960077919305296.html
   My bibliography  Save this article

Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems

Author

Listed:
  • Balankin, Alexander S.

Abstract

This paper is devoted to the development of the fractional space approach to physical problems on fractals and in confined quasi-low-dimensional systems. The aim of this development is to expand this approach by accounting for essential fractal features of the system under the study. For this purpose, the fractal properties of scale invariant and confined systems are scrutinized. This allows us to establish a set of requirements imposed by the mapping of physical problems on fractals onto boundary valued problems in the model fractional space. Accordingly, the Stillinger's definition of space with a non-integer dimension is endowed with suitable fractal attributes defined by two additional axioms. We also point out that the model fractional spaces admit different definitions of vector differential calculus. Two suitable sets of the vector differential operators in the fractional space are suggested. Furthermore, we construct several models of the fractional space enabled for studies of transport phenomena in the confined quasi-low-dimensional systems. The fractal architectures of these model spaces are highlighted.

Suggested Citation

  • Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305296
    DOI: 10.1016/j.chaos.2019.109572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919305296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lacan, Francis & Tresser, Charles, 2015. "Fractals as objects with nontrivial structures at all scales," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 218-242.
    2. Baskin, Emmanuel & Iomin, Alexander, 2011. "Electrostatics in fractal geometry: Fractional calculus approach," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 335-341.
    3. Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
    4. Rami, El-Nabulsi Ahmad, 2009. "Fractional illusion theory of space: Fractional gravitational field with fractional extra-dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 377-384.
    5. Godinho, Cresus F.L. & Weberszpil, J. & Helayël-Neto, J.A., 2012. "Extending the D’alembert solution to space–time Modified Riemann–Liouville fractional wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 765-771.
    6. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    7. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    8. Weberszpil, J. & Helayël-Neto, J.A., 2016. "Variational approach and deformed derivatives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 217-227.
    9. Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.
    10. Balankin, Alexander S. & Bory-Reyes, Juan & Shapiro, Michael, 2016. "Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 345-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Balankin, Alexander S., 2024. "A survey of fractal features of Bernoulli percolation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
    4. Didier Samayoa & Liliana Alvarez-Romero & José Alfredo Jiménez-Bernal & Lucero Damián Adame & Andriy Kryvko & Claudia del C. Gutiérrez-Torres, 2024. "Torricelli’s Law in Fractal Space–Time Continuum," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    5. Zine El Abiddine Fellah & Mohamed Fellah & Nicholas O. Ongwen & Erick Ogam & Claude Depollier, 2021. "Acoustics of Fractal Porous Material and Fractional Calculus," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    6. Buczolich, Zoltán & Maga, Balázs & Vértesy, Gáspár, 2022. "Generic Hölder level sets and fractal conductivity," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Balankin, Alexander S. & Ramírez-Joachin, Juan & González-López, Gabriela & Gutíerrez-Hernández, Sebastián, 2022. "Formation factors for a class of deterministic models of pre-fractal pore-fracture networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.
    3. Qiu, Lin & Lin, Ji & Chen, Wen & Wang, Fajie & Hua, Qingsong, 2020. "A novel method for image edge extraction based on the Hausdorff derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    5. Umpierrez, Haridas & Davis, Sergio, 2021. "Fluctuation theorems in q-canonical ensembles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    6. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    8. Golmankhaneh, Alireza K. & Tunç, Cemil, 2019. "Sumudu transform in fractal calculus," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 386-401.
    9. Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    10. Didier Samayoa & Liliana Alvarez-Romero & José Alfredo Jiménez-Bernal & Lucero Damián Adame & Andriy Kryvko & Claudia del C. Gutiérrez-Torres, 2024. "Torricelli’s Law in Fractal Space–Time Continuum," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    11. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    12. Qadeer, Neelam & Bhatti, Nayab & Naqvi, Qaisar Abbas & Fiaz, Muhammad Arshad, 2019. "Use of Kobayashi potential method and Lorentz–Drude model to study scattering from a PEC strip buried below a lossy dispersive NID dielectric-magnetic slab," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    13. Tian, Peibo & Liang, Yingjie, 2022. "Material coordinate driven variable-order fractal derivative model of water anomalous adsorption in swelling soil," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    16. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    17. Duarte Valério & Manuel D. Ortigueira & António M. Lopes, 2022. "How Many Fractional Derivatives Are There?," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    18. Méndez, Vicenç & Iomin, Alexander, 2013. "Comb-like models for transport along spiny dendrites," Chaos, Solitons & Fractals, Elsevier, vol. 53(C), pages 46-51.
    19. Nigmatullin, Raoul & Sarkar, Samyadip & Biswas, Karabi, 2021. "New class of fractal elements with log-periodic corrections: Confirmation on experimental data," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:132:y:2020:i:c:s0960077919305296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.