IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v119y2019icp135-142.html
   My bibliography  Save this article

Fractal-fractional modelling of partially penetrating wells

Author

Listed:
  • Razminia, Kambiz
  • Razminia, Abolhassan
  • Baleanu, Dumitru

Abstract

In this paper, the fractional order dynamical system theory is used to describe the complex behaviour of partially penetrating wells (PPWs) in a typical reservoir whose geometry is governed by fractal tools. The Green’s function approach, as a generalised impulse response function, is adopted to model the fluid flow in any type of reservoir with a partially penetrating (vertical) well producing from it. Having obtained the initial description of a typical PPW, using the Laplace transform a new dimensionless constant-flow-rate solution is introduced, when wellbore storage and skin effects are significant. The pressure-transient behaviour of a PPW is discussed following two synthetic examples which illustratively depict the effectiveness of the proposed results.

Suggested Citation

  • Razminia, Kambiz & Razminia, Abolhassan & Baleanu, Dumitru, 2019. "Fractal-fractional modelling of partially penetrating wells," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 135-142.
  • Handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:135-142
    DOI: 10.1016/j.chaos.2018.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918310506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Metzler, Ralf & Glöckle, Walter G. & Nonnenmacher, Theo F., 1994. "Fractional model equation for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 211(1), pages 13-24.
    2. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    3. Jajarmi, Amin & Baleanu, Dumitru, 2018. "A new fractional analysis on the interaction of HIV with CD4+ T-cells," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 221-229.
    4. Razminia, Kambiz & Razminia, Abolhassan & Torres, Delfim F.M., 2015. "Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 374-380.
    5. Abolhassan Razminia & Dumitru Baleanu & Vahid Johari Majd, 2013. "Conditional Optimization Problems: Fractional Order Case," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 45-55, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Alcántara-López & Carlos Fuentes & Rodolfo G. Camacho-Velázquez & Fernando Brambila-Paz & Carlos Chávez, 2022. "Spatial Fractional Darcy’s Law on the Diffusion Equation with a Fractional Time Derivative in Single-Porosity Naturally Fractured Reservoirs," Energies, MDPI, vol. 15(13), pages 1-11, July.
    2. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Viacheslav V. Saenko & Vladislav N. Kovalnogov & Ruslan V. Fedorov & Dmitry A. Generalov & Ekaterina V. Tsvetova, 2022. "Numerical Method for Solving of the Anomalous Diffusion Equation Based on a Local Estimate of the Monte Carlo Method," Mathematics, MDPI, vol. 10(3), pages 1-19, February.
    4. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    5. Baleanu, Dumitru & Jajarmi, Amin & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Hamid Boulares & Abdelkader Moumen & Khaireddine Fernane & Jehad Alzabut & Hicham Saber & Tariq Alraqad & Mhamed Benaissa, 2023. "On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    7. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    8. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    9. Zhenduo Sun & Nengneng Qing & Xiangzhi Kong, 2023. "Asymptotic Hybrid Projection Lag Synchronization of Nonidentical Variable-Order Fractional Complex Dynamic Networks," Mathematics, MDPI, vol. 11(13), pages 1-17, June.
    10. Campos, Rafael G. & Huet, Adolfo, 2018. "Numerical inversion of the Laplace transform and its application to fractional diffusion," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 70-78.
    11. Zaheer Masood & Muhammad Asif Zahoor Raja & Naveed Ishtiaq Chaudhary & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Fractional Dynamics of Stuxnet Virus Propagation in Industrial Control Systems," Mathematics, MDPI, vol. 9(17), pages 1-27, September.
    12. Qureshi, Sania & Yusuf, Abdullahi, 2019. "Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 111-118.
    13. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    14. Paul Hauseux & Jack S Hale & Stéphane P A Bordas, 2017. "Calculating the Malliavin derivative of some stochastic mechanics problems," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-18, December.
    15. Kumar, Pushpendra & Govindaraj, V. & Erturk, Vedat Suat, 2022. "A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.
    17. Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
    18. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    19. Pavlos, G.P. & Karakatsanis, L.P. & Iliopoulos, A.C. & Pavlos, E.G. & Xenakis, M.N. & Clark, Peter & Duke, Jamie & Monos, D.S., 2015. "Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 188-209.
    20. Yiheng Wei & Bin Du & Songsong Cheng & Yong Wang, 2017. "Fractional Order Systems Time-Optimal Control and Its Application," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 122-138, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:119:y:2019:i:c:p:135-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.