IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics096007792200875x.html
   My bibliography  Save this article

Generic Hölder level sets and fractal conductivity

Author

Listed:
  • Buczolich, Zoltán
  • Maga, Balázs
  • Vértesy, Gáspár

Abstract

Hausdorff dimensions of level sets of generic continuous functions defined on fractals can give information about the “thickness/narrow cross-sections” of a “network” corresponding to a fractal set, F. This lead to the definition of the topological Hausdorff dimension of fractals. In this paper we continue our study of the level sets of generic 1-Hölder-α functions. While in a previous paper we gave the initial definitions and established some properties of these generic level sets, in this paper we provide numerical estimates in the case of the Sierpiński triangle. These calculations give better insight and illustrate why can one think of these generic 1-Hölder-α level sets as something measuring “thickness/narrow cross-sections/conductivity” of a fractal “network”.

Suggested Citation

  • Buczolich, Zoltán & Maga, Balázs & Vértesy, Gáspár, 2022. "Generic Hölder level sets and fractal conductivity," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200875x
    DOI: 10.1016/j.chaos.2022.112696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792200875X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balka, Richárd & Buczolich, Zoltán & Elekes, Márton, 2012. "Topological Hausdorff dimension and level sets of generic continuous functions on fractals," Chaos, Solitons & Fractals, Elsevier, vol. 45(12), pages 1579-1589.
    2. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zine El Abiddine Fellah & Mohamed Fellah & Nicholas O. Ongwen & Erick Ogam & Claude Depollier, 2021. "Acoustics of Fractal Porous Material and Fractional Calculus," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    2. Didier Samayoa & Liliana Alvarez-Romero & José Alfredo Jiménez-Bernal & Lucero Damián Adame & Andriy Kryvko & Claudia del C. Gutiérrez-Torres, 2024. "Torricelli’s Law in Fractal Space–Time Continuum," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    3. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Balankin, Alexander S. & Ramírez-Joachin, Juan & González-López, Gabriela & Gutíerrez-Hernández, Sebastián, 2022. "Formation factors for a class of deterministic models of pre-fractal pore-fracture networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Balankin, Alexander S., 2024. "A survey of fractal features of Bernoulli percolation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s096007792200875x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.