IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp346-353.html
   My bibliography  Save this article

Fractional and fractal derivative models for transient anomalous diffusion: Model comparison

Author

Listed:
  • Sun, HongGuang
  • Li, Zhipeng
  • Zhang, Yong
  • Chen, Wen

Abstract

Transient anomalous diffusion characterized by transition between diffusive states (i.e., sub-diffusion and normal-diffusion) is not uncommon in real-world geologic media, due to the spatiotemporal variation of multiple physical, hydrologic, and chemical factors that can trigger non-Fickian diffusion. There are four fractional and fractal derivative models that can describe transient diffusion, including the distributed-order fractional diffusion equation (D-FDE), the tempered fractional diffusion equation (T-FDE), the variable-order fractional diffusion equation (V-FDE), and the variable-order fractal derivative diffusion equation (H-FDE). This study evaluates these models for transient sub-diffusion by comparing their mean squared displacement (which is the criteria for diffusion state), breakthrough curves (exhibiting nuance in diffusive state transition), and possible hydrogeologic origin (to build a potential link to medium properties). Results show that the T-FDE captures the slowest transition from sub-diffusion to normal-diffusion, and the D-FDE model only captures transient diffusion ending with sub-diffusion. The other two models, V-FDE and H-FDE, define a time-dependent scaling index to characterize complex transition states and rates. Preliminary field application shows that the V-FDE model, which provides a flexible transition rate, is appropriate to capture the fast transition from sub-diffusion to normal-diffusion for transport of a fluorescent water tracer dye (uranine) through a small-scale fractured aquifer. Further evaluations are needed using field measurements, so that practitioners can select the most reliable model for real-world applications.

Suggested Citation

  • Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:346-353
    DOI: 10.1016/j.chaos.2017.03.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    2. Lenzi, E.K. & Malacarne, L.C. & Mendes, R.S. & Pedron, I.T., 2003. "Anomalous diffusion, nonlinear fractional Fokker–Planck equation and solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 245-252.
    3. Sun, HongGuang & Chen, Wen & Li, Changpin & Chen, YangQuan, 2010. "Fractional differential models for anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2719-2724.
    4. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    2. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Zhang, Yuxin & Li, Qian & Ding, Hengfei, 2018. "High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives: construction and application (I)," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 432-443.
    5. Hashan, Mahamudul & Jahan, Labiba Nusrat & Tareq-Uz-Zaman, & Imtiaz, Syed & Hossain, M. Enamul, 2020. "Modelling of fluid flow through porous media using memory approach: A review," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 643-673.
    6. Duan, Jun-Sheng & Qiu, Xiang, 2018. "Stokes’ second problem of viscoelastic fluids with constitutive equation of distributed-order derivative," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 130-139.
    7. L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
    8. Huang, Lan-Lan & Baleanu, Dumitru & Mo, Zhi-Wen & Wu, Guo-Cheng, 2018. "Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 166-175.
    9. Wu, Longyuan & Zhai, Shuying, 2020. "A new high order ADI numerical difference formula for time-fractional convection-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    10. Du, Rui & Sun, Dongke & Shi, Baochang & Chai, Zhenhua, 2019. "Lattice Boltzmann model for time sub-diffusion equation in Caputo sense," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 80-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hayman Thabet & Subhash Kendre & Dimplekumar Chalishajar, 2017. "New Analytical Technique for Solving a System of Nonlinear Fractional Partial Differential Equations," Mathematics, MDPI, vol. 5(4), pages 1-15, September.
    2. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    4. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Hashemi, M.S., 2015. "Group analysis and exact solutions of the time fractional Fokker–Planck equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 141-149.
    6. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    7. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    8. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    10. Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Viet-Thanh Pham, 2020. "On the Stability of Linear Incommensurate Fractional-Order Difference Systems," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    11. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    12. Chauhan, Archana & Gautam, G.R. & Chauhan, S.P.S. & Dwivedi, Arpit, 2023. "A validation on concept of formula for variable order integral and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    14. Hossein Fazli & HongGuang Sun & Juan J. Nieto, 2020. "Fractional Langevin Equation Involving Two Fractional Orders: Existence and Uniqueness Revisited," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
    15. Pu, Zhe & Ran, Maohua & Luo, Hong, 2021. "Fast and high-order difference schemes for the fourth-order fractional sub-diffusion equations with spatially variable coefficient under the first Dirichlet boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 110-133.
    16. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    17. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    18. Nagy, A.M., 2017. "Numerical solution of time fractional nonlinear Klein–Gordon equation using Sinc–Chebyshev collocation method," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 139-148.
    19. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    20. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:346-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.