IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v444y2016icp345-359.html
   My bibliography  Save this article

Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric

Author

Listed:
  • Balankin, Alexander S.
  • Bory-Reyes, Juan
  • Shapiro, Michael

Abstract

One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil–Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.

Suggested Citation

  • Balankin, Alexander S. & Bory-Reyes, Juan & Shapiro, Michael, 2016. "Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 345-359.
  • Handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:345-359
    DOI: 10.1016/j.physa.2015.10.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500881X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.10.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rufeil Fiori, E. & Plastino, A., 2013. "A Shannon–Tsallis transformation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1742-1749.
    2. Plastino, A. & Rocca, M.C., 2013. "The Tsallis–Laplace transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5581-5591.
    3. Kalogeropoulos, Nikos, 2012. "Tsallis entropy induced metrics and CAT(k) spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3435-3445.
    4. Weberszpil, J. & Lazo, Matheus Jatkoske & Helayël-Neto, J.A., 2015. "On a connection between a class of q-deformed algebras and the Hausdorff derivative in a medium with fractal metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 399-404.
    5. Piasecki, R. & Martin, M.T. & Plastino, A., 2002. "Inhomogeneity and complexity measures for spatial patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(1), pages 157-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Lin & Lin, Ji & Chen, Wen & Wang, Fajie & Hua, Qingsong, 2020. "A novel method for image edge extraction based on the Hausdorff derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    2. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    5. Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.
    6. Qadeer, Neelam & Bhatti, Nayab & Naqvi, Qaisar Abbas & Fiaz, Muhammad Arshad, 2019. "Use of Kobayashi potential method and Lorentz–Drude model to study scattering from a PEC strip buried below a lossy dispersive NID dielectric-magnetic slab," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhokh, Alexey & Strizhak, Peter, 2018. "Thiele modulus having regard to the anomalous diffusion in a catalyst pellet," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 58-63.
    2. Umpierrez, Haridas & Davis, Sergio, 2021. "Fluctuation theorems in q-canonical ensembles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    4. Qiu, Lin & Lin, Ji & Chen, Wen & Wang, Fajie & Hua, Qingsong, 2020. "A novel method for image edge extraction based on the Hausdorff derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Chen, Wen & Hei, Xindong & Sun, Hongguang & Hu, Dongliang, 2018. "Stretched exponential stability of nonlinear Hausdorff dynamical systems," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 259-264.
    6. Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    7. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Creaco, Anthony J. & Kalogeropoulos, Nikolaos, 2019. "Irreversibility from staircases in symplectic embeddings," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 497-509.
    9. Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:444:y:2016:i:c:p:345-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.