Use of Kobayashi potential method and Lorentz–Drude model to study scattering from a PEC strip buried below a lossy dispersive NID dielectric-magnetic slab
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2019.124573
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Balankin, Alexander S. & Bory-Reyes, Juan & Shapiro, Michael, 2016. "Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 345-359.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goulart, A.G. & Lazo, M.J. & Suarez, J.M.S., 2020. "A deformed derivative model for turbulent diffusion of contaminants in the atmosphere," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
- Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.
- Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Qiu, Lin & Lin, Ji & Chen, Wen & Wang, Fajie & Hua, Qingsong, 2020. "A novel method for image edge extraction based on the Hausdorff derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
More about this item
Keywords
Non-integer dimensional space; Lorentz–Drude model; Kobayashi potential method; Buried object; Double negative and single negative materials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:362:y:2019:i:c:27. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.