New class of fractal elements with log-periodic corrections: Confirmation on experimental data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2021.111519
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nigmatullin, R.R. & Evdokimov, Yu.K., 2016. "The concept of fractal experiments: New possibilities in quantitative description of quasi-reproducible measurements," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 319-328.
- Nigmatullin, R.R., 2000. "Recognition of nonextensive statistical distributions by the eigencoordinates method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(3), pages 547-565.
- Riccardo Caponetto & Salvatore Graziani & Fulvio L. Pappalardo & Francesca Sapuppo, 2013. "Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element," Advances in Mathematical Physics, Hindawi, vol. 2013, pages 1-10, June.
- Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
- Nigmatullin, Raoul R. & Toboev, Vyacheslav A. & Lino, Paolo & Maione, Guido, 2015. "Reduced fractal model for quantitative analysis of averaged micromotions in mesoscale: Characterization of blow-like signals," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 166-181.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nigmatullin, Raoul R. & Toboev, Vyacheslav A. & Lino, Paolo & Maione, Guido, 2015. "Reduced fractal model for quantitative analysis of averaged micromotions in mesoscale: Characterization of blow-like signals," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 166-181.
- Golmankhaneh, Alireza K. & Tunç, Cemil, 2019. "Sumudu transform in fractal calculus," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 386-401.
- Serkan Araci & Gauhar Rahman & Abdul Ghaffar & Azeema & Kottakkaran Sooppy Nisar, 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
- Al-Hasan, Mohammed & Nigmatullin, Raoul R., 2003. "Identification of the generalized Weibull distribution in wind speed data by the Eigen-coordinates method," Renewable Energy, Elsevier, vol. 28(1), pages 93-110.
- Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
- Touré, Siaka, 2005. "Investigations on the Eigen‐coordinates method for the 2‐parameter weibull distribution of wind speed," Renewable Energy, Elsevier, vol. 30(4), pages 511-521.
- Nigmatullin, R.R. & Budnikov, H.C. & Sidelnikov, A.V., 2018. "Mesoscopic theory of percolation currents associated with quantitative description of VAGs: Confirmation on real data," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 171-183.
- Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
- Nigmatullin, R.R. & Osokin, S.I. & Toboev, V.A., 2011. "NAFASS: Discrete spectroscopy of random signals," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 226-240.
- Qiu, Lin & Lin, Ji & Chen, Wen & Wang, Fajie & Hua, Qingsong, 2020. "A novel method for image edge extraction based on the Hausdorff derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
- Nigmatullin, Raoul R. & Vorobev, Artem S. & Nepeina, Kseniia S. & Alexandrov, Pavel N., 2019. "Fractal description of the complex beatings: How to describe quantitatively seismic waves?," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 171-182.
- Raoul Nigmatullin & Semyon Dorokhin & Alexander Ivchenko, 2021. "Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems," Mathematics, MDPI, vol. 9(4), pages 1-11, February.
More about this item
Keywords
Complex-conjugated power-law exponents; Branching structures; The squared log-normal corrections; The measured complex impedance of MWCNTs based fractal elements; Sinusoidal phase response;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p1:s0960077921008730. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.