IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i15p1774-d602270.html
   My bibliography  Save this article

Acoustics of Fractal Porous Material and Fractional Calculus

Author

Listed:
  • Zine El Abiddine Fellah

    (LMA, CNRS, UMR 7031, Centrale Marseille, Aix-Marseille Univ, CEDEX 20, 13402 Marseille, France)

  • Mohamed Fellah

    (Laboratoire de Physique Théorique, Faculté de Physique, USTHB, BP 32 El Alia, Bab Ezzouar 16111, Algeria)

  • Nicholas O. Ongwen

    (Department of Physics and Materials Science, Maseno University, Maseno 40105, Kenya)

  • Erick Ogam

    (LMA, CNRS, UMR 7031, Centrale Marseille, Aix-Marseille Univ, CEDEX 20, 13402 Marseille, France)

  • Claude Depollier

    (UMR CNRS 6613, Laboratoire d’Acoustique de l’Universite du Maine, LUNAM Universite du Maine, UFR STS Avenue O. Messiaen, CEDEX 09, 72085 Le Mans, France
    ESST, 43 Chemin Sidi M’Barek, Oued Romane, El Achour 16104, Algeria)

Abstract

In this paper, we present a fractal (self-similar) model of acoustic propagation in a porous material with a rigid structure. The fractal medium is modeled as a continuous medium of non-integer spatial dimension. The basic equations of acoustics in a fractal porous material are written. In this model, the fluid space is considered as fractal while the solid matrix is non-fractal. The fluid–structure interactions are described by fractional operators in the time domain. The resulting propagation equation contains fractional derivative terms and space-dependent coefficients. The fractional wave equation is solved analytically in the time domain, and the reflection and transmission operators are calculated for a slab of fractal porous material. Expressions for the responses of the fractal porous medium (reflection and transmission) to an acoustic excitation show that it is possible to deduce these responses from those obtained for a non-fractal porous medium, only by replacing the thickness of the non-fractal material by an effective thickness depending on the fractal dimension of the material. This result shows us that, thanks to the fractal dimension, we can increase (sometimes by a ratio of 50) and decrease the equivalent thickness of the fractal material. The wavefront speed of the fractal porous material depends on the fractal dimension and admits several supersonic values. These results open a scientific challenge for the creation of new acoustic fractal materials, such as metamaterials with very specific acoustic properties.

Suggested Citation

  • Zine El Abiddine Fellah & Mohamed Fellah & Nicholas O. Ongwen & Erick Ogam & Claude Depollier, 2021. "Acoustics of Fractal Porous Material and Fractional Calculus," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1774-:d:602270
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/15/1774/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/15/1774/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Didier Samayoa & Liliana Alvarez-Romero & José Alfredo Jiménez-Bernal & Lucero Damián Adame & Andriy Kryvko & Claudia del C. Gutiérrez-Torres, 2024. "Torricelli’s Law in Fractal Space–Time Continuum," Mathematics, MDPI, vol. 12(13), pages 1-13, June.
    2. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Balankin, Alexander S. & Mena, Baltasar, 2023. "Vector differential operators in a fractional dimensional space, on fractals, and in fractal continua," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    4. Buczolich, Zoltán & Maga, Balázs & Vértesy, Gáspár, 2022. "Generic Hölder level sets and fractal conductivity," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    5. Balankin, Alexander S. & Ramírez-Joachin, Juan & González-López, Gabriela & Gutíerrez-Hernández, Sebastián, 2022. "Formation factors for a class of deterministic models of pre-fractal pore-fracture networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Balankin, Alexander S., 2024. "A survey of fractal features of Bernoulli percolation," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1774-:d:602270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.