IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v113y2018icp186-196.html
   My bibliography  Save this article

Analysis of the behaviour of the detrended BSE sensex data

Author

Listed:
  • Chatterjee, Soumya
  • Mukherjee, Indranil
  • Barat, P.

Abstract

The objective of this work is to investigate the pattern exhibited by detrended intra-day BSE Sensex data for the years 2006 to 2012. The detrended data are analysed using Principal Component Analysis (PCA) and its non-linear version, Kernel Principal Component Analysis (KPCA). The detrended data is found to display a high degree of correlation which indicates that the evolution of the detrended prices is restricted to a very low dimensional subspace of the original vector space in which the analysis is done. Different types of synthetic data are generated, which when subject to the same set of analyses, are found to give results along expected lines, thereby verifying the efficacy of the techniques employed. Hurst coefficients of the detrended data sets are calculated for different years using modified R/S analysis. The Hurst coefficient is also computed for the entire data set by gradually changing the scale of analysis and also by using the sliding window technique. In all cases the data set are found to be persistent in nature thereby reinforcing the conclusions obtained by the PCA/KPCA formalism.

Suggested Citation

  • Chatterjee, Soumya & Mukherjee, Indranil & Barat, P., 2018. "Analysis of the behaviour of the detrended BSE sensex data," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 186-196.
  • Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:186-196
    DOI: 10.1016/j.chaos.2018.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Chandradew & Banerjee, Kinjal, 2015. "A study of correlations in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 321-330.
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    6. Mishra, Ritesh Kumar & Sehgal, Sanjay & Bhanumurthy, N.R., 2011. "A search for long-range dependence and chaotic structure in Indian stock market," Review of Financial Economics, Elsevier, vol. 20(2), pages 96-104, May.
    7. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    8. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    9. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    10. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    11. Jung, Woo-Sung & Chae, Seungbyung & Yang, Jae-Suk & Moon, Hie-Tae, 2006. "Characteristics of the Korean stock market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 263-271.
    12. Lillo, Fabrizio & Mantegna, Rosario N., 2001. "Ensemble properties of securities traded in the NASDAQ market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 161-167.
    13. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    14. Sadique, Shibley & Silvapulle, Param, 2001. "Long-Term Memory in Stock Market Returns: International Evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(1), pages 59-67, January.
    15. Mukherjee, I. & Chatterjee, Soumya & Giri, A. & Barat, P., 2017. "Understanding the pattern of the BSE Sensex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 262-275.
    16. Dennis P. Quinn & Hans-Joachim Voth, 2008. "A Century of Global Equity Market Correlations," American Economic Review, American Economic Association, vol. 98(2), pages 535-540, May.
    17. Chandradew Sharma & Kinjal Banerjee, 2015. "A Study of Correlations in the Stock Market," Papers 1504.05844, arXiv.org.
    18. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    19. John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
    20. Parameswaran Gopikrishnan & Vasiliki Plerou & Xavier Gabaix & H. Eugene Stanley, 2000. "Statistical Properties of Share Volume Traded in Financial Markets," Papers cond-mat/0008113, arXiv.org.
    21. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    22. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    23. Guhathakurta, Kousik & Mukherjee, Indranil & Chowdhury, A. Roy, 2008. "Empirical mode decomposition analysis of two different financial time series and their comparison," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1214-1227.
    24. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2022. "Describing the effect of influential spreaders on the different sectors of Indian market: a complex networks perspective," Papers 2303.05432, arXiv.org.
    2. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2024. "A study of the effect of influential spreaders on the different sectors of Indian market and a few foreign markets: a complex networks perspective," Journal of Computational Social Science, Springer, vol. 7(1), pages 45-85, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    2. Gu, Rongbao & Xiong, Wei & Li, Xinjie, 2015. "Does the singular value decomposition entropy have predictive power for stock market? — Evidence from the Shenzhen stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 103-113.
    3. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
    6. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    7. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    8. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    9. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    10. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    11. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    12. Guglielmo Maria Caporale & Luis Gil-Alana, 2011. "The weekly structure of US stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1757-1764.
    13. Saadet Kasman & Evrim Turgutlu & A. Duygu Ayhan, 2009. "Long memory in stock returns: evidence from the major emerging Central European stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(17), pages 1763-1768.
    14. Keith Jefferis & Pako Thupayagale, 2008. "Long Memory In Southern African Stock Markets," South African Journal of Economics, Economic Society of South Africa, vol. 76(3), pages 384-398, September.
    15. Chaker Aloui & Duc Khuong Nguyen, 2014. "On the detection of extreme movements and persistent behaviour in Mediterranean stock markets: a wavelet-based approach," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2611-2622, August.
    16. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    17. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    18. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    19. Limam Imed, 2003. "Is Long Memory a Property of Thin Stock Markets? International Evidence Using Arab Countries," Review of Middle East Economics and Finance, De Gruyter, vol. 1(3), pages 56-71, December.
    20. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:186-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.