IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/101946.html
   My bibliography  Save this paper

Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks

Author

Listed:
  • BHANDARI, AVISHEK

Abstract

This study investigates the long range dependence and correlation structures of some select stock markets. Using novel wavelet methods of long range dependence, we show presence of long memory in the stock returns of some emerging economies and the lack of it in developed markets of Europe and the United States. Moreover, we conduct a wavelet based fractal connectivity analysis, which is the first application in economics and financial studies, to segregate markets into fractally similar groups and find that developed markets have similar fractal structures. Similarly stock returns of emerging markets exhibiting long-memory tend to follow similar fractal structures. Furthermore, network analyses of fractal connectivity support our findings on market efficiency which has theoretical roots in both fractal and adaptive market hypothesis.

Suggested Citation

  • Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:101946
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/101946/1/MPRA_paper_101946.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Pascoal & Ana Margarida Monteiro, 2013. "Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis," GEMF Working Papers 2013-27, GEMF, Faculty of Economics, University of Coimbra.
    2. Power, Gabriel J. & Turvey, Calum G., 2010. "Long-range dependence in the volatility of commodity futures prices: Wavelet-based evidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 79-90.
    3. Jussi Tolvi, 2003. "Long memory and outliers in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 495-502.
    4. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    5. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    6. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    7. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    8. Keith Jefferis & Pako Thupayagale, 2008. "Long Memory In Southern African Stock Markets," South African Journal of Economics, Economic Society of South Africa, vol. 76(3), pages 384-398, September.
    9. Epaminondas Panas, 2001. "Estimating fractal dimension using stable distributions and exploring long memory through ARFIMA models in Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 395-402.
    10. Elder, John & Serletis, Apostolos, 2007. "On fractional integrating dynamics in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 777-781.
    11. Heni Boubaker & Anne Peguin-Feissolle, 2013. "Estimating the Long-Memory Parameter in Nonstationary Processes Using Wavelets," Post-Print hal-01498239, HAL.
    12. Tiwari, Aviral Kumar & Kumar, Satish & Pathak, Rajesh & Roubaud, David, 2019. "Testing the oil price efficiency using various measures of long-range dependence," Energy Economics, Elsevier, vol. 84(C).
    13. John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000. "Long memory in the Greek stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
    14. Olan Henry, 2002. "Long memory in stock returns: some international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 12(10), pages 725-729.
    15. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    16. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    17. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2010. "Study of memory effects in international market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1653-1664.
    18. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    19. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    20. Robert DiSario & Hakan Saraoglu & Joseph McCarthy & H. Li, 2008. "An investigation of long memory in various measures of stock market volatility, using wavelets and aggregate series," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 32(2), pages 136-147, April.
    21. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-427, October.
    22. Ozun, Alper & Cifter, Atilla, 2007. "Modeling Long-Term Memory Effect in Stock Prices: A Comparative Analysis with GPH Test and Daubechies Wavelets," MPRA Paper 2481, University Library of Munich, Germany.
    23. Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
    24. repec:zbw:bofrdp:2005_027 is not listed on IDEAS
    25. Sophie Achard & Irène Gannaz, 2016. "Multivariate Wavelet Whittle Estimation in Long-range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 476-512, July.
    26. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-283, July.
    27. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    2. Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.
    3. Avishek Bhandari & Bandi Kamaiah, 2020. "Long memory in select stock returns using an alternative wavelet log-scale alignment approach," Papers 2004.08550, arXiv.org.
    4. Yalama, Abdullah & Celik, Sibel, 2013. "Real or spurious long memory characteristics of volatility: Empirical evidence from an emerging market," Economic Modelling, Elsevier, vol. 30(C), pages 67-72.
    5. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    6. Tripathy, Naliniprava, 2022. "Long memory and volatility persistence across BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    8. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    9. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    10. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    11. Tomasz Wójtowicz & Henryk Gurgul, 2009. "Long memory of volatility measures in time series," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(1), pages 37-54.
    12. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    13. Guglielmo Maria Caporale & Luis Gil-Alana, 2011. "The weekly structure of US stock prices," Applied Financial Economics, Taylor & Francis Journals, vol. 21(23), pages 1757-1764.
    14. Kim Liow, 2009. "Long-term Memory in Volatility: Some Evidence from International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 415-438, November.
    15. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    16. Tan, Pei P. & Galagedera, Don U.A. & Maharaj, Elizabeth A., 2012. "A wavelet based investigation of long memory in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2330-2341.
    17. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    18. Luis A. Gil-Alana & Yun Cao, 2011. "Stock market prices in China. Efficiency, mean reversion, long memory volatility and other implicit dynamics," Faculty Working Papers 12/11, School of Economics and Business Administration, University of Navarra.
    19. Luis Gil-Alana, 2010. "Testing persistence in the context of conditional heteroscedasticity errors," Applied Financial Economics, Taylor & Francis Journals, vol. 20(22), pages 1709-1723.
    20. A. Assaf, 2007. "Fractional integration in the equity markets of MENA region," Applied Financial Economics, Taylor & Francis Journals, vol. 17(9), pages 709-723.

    More about this item

    Keywords

    Long memory; Fractal connectivity; Wavelets; Hurst; Complex networks;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:101946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.