IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1504.05844.html
   My bibliography  Save this paper

A Study of Correlations in the Stock Market

Author

Listed:
  • Chandradew Sharma
  • Kinjal Banerjee

Abstract

We study the various sectors of the Bombay Stock Exchange(BSE) for a period of 8 years from April 2006 - March 2014. Using the data of daily returns of a period of eight years we make a direct model free analysis of the pattern of the sectorial indices movement and the correlations among them. Our analysis shows significant auto correlation among the individual sectors and also strong cross-correlation among sectors. We also find that auto correlations in some of the sectors persist in time. This is a very significant result and has not been reported so far in Indian context These findings will be very useful in model building for prediction of price movement of equities, derivatives and portfolio management. We show that the Random Walk Hypothesis is not applicable in modeling the Indian market and Mean-Variance-Skewness-Kurtosis based portfolio optimization might be required. We also find that almost all sectors are highly correlated during large fluctuation periods and have only moderate correlation during normal periods.

Suggested Citation

  • Chandradew Sharma & Kinjal Banerjee, 2015. "A Study of Correlations in the Stock Market," Papers 1504.05844, arXiv.org.
  • Handle: RePEc:arx:papers:1504.05844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1504.05844
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming-Yuan Yang & Sai-Ping Li & Li-Xin Zhong & Fei Ren, 2018. "Modelling stock correlations with expected returns from investors," Papers 1803.02019, arXiv.org, revised Mar 2018.
    2. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2022. "Describing the effect of influential spreaders on the different sectors of Indian market: a complex networks perspective," Papers 2303.05432, arXiv.org.
    3. Shilpa Srivastava & Millie Pant & Varuna Gupta, 2023. "Analysis and prediction of Indian stock market: a machine-learning approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1567-1585, August.
    4. Chatterjee, Soumya & Mukherjee, Indranil & Barat, P., 2018. "Analysis of the behaviour of the detrended BSE sensex data," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 186-196.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1504.05844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.