IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i1d10.1007_s42001-023-00229-4.html
   My bibliography  Save this article

A study of the effect of influential spreaders on the different sectors of Indian market and a few foreign markets: a complex networks perspective

Author

Listed:
  • Anwesha Sengupta

    (Maulana Abul Kalam Azad University of Technology)

  • Shashankaditya Upadhyay

    (Indian Institute of Science Education and Research, Kolkata)

  • Indranil Mukherjee

    (Maulana Abul Kalam Azad University of Technology)

  • Prasanta K. Panigrahi

    (Indian Institute of Science Education and Research, Kolkata)

Abstract

Market competition has a role that is directly or indirectly associated with the influential effects of individual sectors on other sectors of the financial market. The present work studies the relative position of stocks in the market through the identification of influential spreaders and their corresponding effect on the other sectors of the market using complex network analysis during and after the COVID-19-induced lockdown periods. The study uses daily data of NSE along with those of different countries like USA (Nasdaq), UK (UK stock exchange), Japan (Nikkei) and Brazil (Bovespa) from December 2019 to June 2021. The existing network approaches using different centrality measures failed to distinguish between the positive and negative influences of the different sectors in the market which act as spreaders. To overcome this problem, this paper presents an effective measure called LIEST (Local Influential Effects for a Specific Target) that can examine the positive and negative influences separately with respect to any period. LIEST considers the combined impact of all possible nodes which are at most three steps away from the specific target nodes in the networks. This study considers the transmission of financial influence originating at a source node (a particular stock) and propagating to target nodes through the financial market modeled as a complex network where the structure of the network is captured by correlation. The essence of non-linearity in the network dynamics without considering the single node effect becomes visible in the proposed network. A comparative analysis has been undertaken among the stocks drawn from financial markets around the world (USA, UK, Brazil and Japan) with that of the Indian stock to obtain an idea about the global market behaviour. As an example, the active participation of healthcare and consumer defensive sectors along with financial, industrial and technology sectors have been found to create an effective positive impact on the Indian market. Similar results have been obtained with stock market data obtained from other countries. In addition, in respect of spreading performance the proposed approach is found to be efficient as validated by the TRIVALENCY model.

Suggested Citation

  • Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2024. "A study of the effect of influential spreaders on the different sectors of Indian market and a few foreign markets: a complex networks perspective," Journal of Computational Social Science, Springer, vol. 7(1), pages 45-85, April.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00229-4
    DOI: 10.1007/s42001-023-00229-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-023-00229-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-023-00229-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raj Kumar Pan & Sitabhra Sinha, 2007. "Collective behavior of stock price movements in an emerging market," Papers 0704.0773, arXiv.org, revised Nov 2007.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Sitabhra Sinha & Raj Kumar Pan, 2007. "Uncovering the Internal Structure of the Indian Financial Market: Cross-correlation behavior in the NSE," Papers 0704.2115, arXiv.org.
    4. Corsi, Fulvio & Lillo, Fabrizio & Pirino, Davide & Trapin, Luca, 2018. "Measuring the propagation of financial distress with Granger-causality tail risk networks," Journal of Financial Stability, Elsevier, vol. 38(C), pages 18-36.
    5. Siyang Leng & Huanfei Ma & Jürgen Kurths & Ying-Cheng Lai & Wei Lin & Kazuyuki Aihara & Luonan Chen, 2020. "Partial cross mapping eliminates indirect causal influences," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Huang, Chuangxia & Wen, Shigang & Li, Mengge & Wen, Fenghua & Yang, Xin, 2021. "An empirical evaluation of the influential nodes for stock market network: Chinese A-shares case," Finance Research Letters, Elsevier, vol. 38(C).
    7. Brunetti, Celso & Harris, Jeffrey H. & Mankad, Shawn & Michailidis, George, 2019. "Interconnectedness in the interbank market," Journal of Financial Economics, Elsevier, vol. 133(2), pages 520-538.
    8. Flaviano Morone & Hernán A. Makse, 2015. "Correction: Corrigendum: Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 527(7579), pages 544-544, November.
    9. Areejit Samal & Sunil Kumar & Yasharth Yadav & Anirban Chakraborti, 2021. "Network-centric indicators for fragility in global financial indices," Papers 2102.00070, arXiv.org.
    10. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    11. Stuart Oldham & Ben Fulcher & Linden Parkes & Aurina Arnatkevic̆iūtė & Chao Suo & Alex Fornito, 2019. "Consistency and differences between centrality measures across distinct classes of networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    12. Wu, Tao & Gao, Xiangyun & An, Sufang & Liu, Siyao, 2021. "Time-varying pattern causality inference in global stock markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    13. Linyuan Lü & Yi-Cheng Zhang & Chi Ho Yeung & Tao Zhou, 2011. "Leaders in Social Networks, the Delicious Case," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    14. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    15. Alexander Haluszczynski & Ingo Laut & Heike Modest & Christoph Rath, 2017. "Linear and nonlinear market correlations: characterizing financial crises and portfolio optimization," Papers 1712.02661, arXiv.org.
    16. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    17. Hirdesh K. Pharasi & Kiran Sharma & Rakesh Chatterjee & Anirban Chakraborti & Francois Leyvraz & Thomas H. Seligman, 2018. "Identifying long-term precursors of financial market crashes using correlation patterns," Papers 1809.00885, arXiv.org, revised Sep 2018.
    18. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    19. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    20. Upadhyay, Shashankaditya & Banerjee, Anirban & Panigrahi, Prasanta K., 2020. "Causal evolution of global crisis in financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    21. Douglas Guilbeault & Damon Centola, 2021. "Topological measures for identifying and predicting the spread of complex contagions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    22. Doowon Ryu & Doojin Ryu & Heejin Yang, 2020. "Investor Sentiment, Market Competition, and Financial Crisis: Evidence from the Korean Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(8), pages 1804-1816, June.
    23. Chatterjee, Soumya & Mukherjee, Indranil & Barat, P., 2018. "Analysis of the behaviour of the detrended BSE sensex data," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 186-196.
    24. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    25. Linyuan Lü & Tao Zhou & Qian-Ming Zhang & H. Eugene Stanley, 2016. "The H-index of a network node and its relation to degree and coreness," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anwesha Sengupta & Shashankaditya Upadhyay & Indranil Mukherjee & Prasanta K. Panigrahi, 2022. "Describing the effect of influential spreaders on the different sectors of Indian market: a complex networks perspective," Papers 2303.05432, arXiv.org.
    2. Wang, Jingjing & Xu, Shuqi & Mariani, Manuel S. & Lü, Linyuan, 2021. "The local structure of citation networks uncovers expert-selected milestone papers," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Franch, Fabio & Nocciola, Luca & Vouldis, Angelos, 2024. "Temporal networks and financial contagion," Journal of Financial Stability, Elsevier, vol. 71(C).
    4. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    5. Vishwas Kukreti & Hirdesh K. Pharasi & Priya Gupta & Sunil Kumar, 2020. "A perspective on correlation-based financial networks and entropy measures," Papers 2004.09448, arXiv.org.
    6. Yang, Ming-Yuan & Wu, Zhen-Guo & Wu, Xin & Li, Sai-Ping, 2024. "Influential risk spreaders and systemic risk in Chinese financial networks," Emerging Markets Review, Elsevier, vol. 60(C).
    7. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.
    8. James Flamino & Alessandro Galeazzi & Stuart Feldman & Michael W. Macy & Brendan Cross & Zhenkun Zhou & Matteo Serafino & Alexandre Bovet & Hernán A. Makse & Boleslaw K. Szymanski, 2023. "Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections," Nature Human Behaviour, Nature, vol. 7(6), pages 904-916, June.
    9. Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan & Medo, Matúš, 2020. "Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Almeira, Nahuel & Perotti, Juan Ignacio & Chacoma, Andrés & Billoni, Orlando Vito, 2021. "Explosive dismantling of two-dimensional random lattices under betweenness centrality attacks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    11. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    12. Wu, Rui-Jie & Kong, Yi-Xiu & Di, Zengru & Zhang, Yi-Cheng & Shi, Gui-Yuan, 2022. "Analytical solution to the k-core pruning process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    13. Han, Jihui & Zhang, Ge & Dong, Gaogao & Zhao, Longfeng & Shi, Yuefeng & Zou, Yijiang, 2024. "Exact analysis of generalized degree-based percolation without memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    14. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    15. Kulkarni, Saumitra & Pharasi, Hirdesh K. & Vijayaraghavan, Sudharsan & Kumar, Sunil & Chakraborti, Anirban & Samal, Areejit, 2024. "Investigation of Indian stock markets using topological data analysis and geometry-inspired network measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    16. Chen, Chuanglian & Zhou, Lichao & Sun, Chuanwang & Lin, Yuting, 2024. "Does oil future increase the network systemic risk of financial institutions in China?," Applied Energy, Elsevier, vol. 364(C).
    17. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    18. Ye, Yucheng & Xu, Shuqi & Mariani, Manuel Sebastian & Lü, Linyuan, 2022. "Forecasting countries' gross domestic product from patent data," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    19. Zhai, Li & Yan, Xiangbin & Zhang, Guojing, 2018. "Bi-directional h-index: A new measure of node centrality in weighted and directed networks," Journal of Informetrics, Elsevier, vol. 12(1), pages 299-314.
    20. Upadhyay, Shashankaditya & Mukherjee, Indranil & Panigrahi, Prasanta K., 2023. "Inner composition alignment networks reveal financial impacts of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00229-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.