IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v13y2009i5p1014-1026.html
   My bibliography  Save this article

Thermal stratification within the water tank

Author

Listed:
  • Han, Y.M.
  • Wang, R.Z.
  • Dai, Y.J.

Abstract

To sufficiently store and use high-quality heat energy, thermal stratification is gradually applied in many kinds of energy storage fields such as solar thermal utilization system. Because of the unsteady characteristics of solar radiation, thermal storage becomes very essential in long-term operation of heating load. The wide application of thermal stratification lies in the minimization of the mixing effect by use of the thermal stratification, which is caused by the thermal buoyancy because of the difference of temperature between cold and hot water. According to the review, the conception of thermal stratification allows a wide variety of different design embodiments, which essentially extends the fields of practical application of these devices. In this paper a survey of the various types of thermal stratification tanks and research methods is presented, and reasons of energy storage with efficiency problems related to the applications are introduced and benefits offered by thermal stratification are outlined. The structure designs based on theoretical prediction of thermal-stratified water tank performed at many organizations are introduced and are compared with their experimental results. Finally, the development of the tank with thermal stratification in the future application is predicted.

Suggested Citation

  • Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
  • Handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1014-1026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(08)00038-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wood, R.J. & Al-Muslahi, S.M. & O'Callaghan, P.W. & Probert, S.D., 1981. "Thermally stratified hot water storage systems," Applied Energy, Elsevier, vol. 9(3), pages 231-242, November.
    2. Spur, Roman & Fiala, Dusan & Nevrala, Dusan & Probert, Doug, 2006. "Performances of modern domestic hot-water stores," Applied Energy, Elsevier, vol. 83(8), pages 893-910, August.
    3. Spur, Roman & Fiala, Dusan & Nevrala, Dusan & Probert, Doug, 2006. "Influence of the domestic hot-water daily draw-off profile on the performance of a hot-water store," Applied Energy, Elsevier, vol. 83(7), pages 749-773, July.
    4. Ghaddar, N.K., 1994. "Stratified storage tank influence on performance of solar water heating system tested in Beirut," Renewable Energy, Elsevier, vol. 4(8), pages 911-925.
    5. Ismail, Kamal A.R. & Leal, Janaína F.B. & Zanardi, Maurício A., 1997. "Models of liquid storage tanks," Energy, Elsevier, vol. 22(8), pages 805-815.
    6. Knudsen, S. & Furbo, S., 2004. "Thermal stratification in vertical mantle heat-exchangers with application to solar domestic hot-water systems," Applied Energy, Elsevier, vol. 78(3), pages 257-272, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    2. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    3. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    4. Farzaneh-Gord, M. & Arabkoohsar, A. & Deymi Dasht-bayaz, M. & Farzaneh-Kord, V., 2012. "Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations," Energy, Elsevier, vol. 41(1), pages 420-428.
    5. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    6. Verda, Vittorio & Colella, Francesco, 2011. "Primary energy savings through thermal storage in district heating networks," Energy, Elsevier, vol. 36(7), pages 4278-4286.
    7. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    8. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    9. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    10. Castell, A. & Medrano, M. & Solé, C. & Cabeza, L.F., 2010. "Dimensionless numbers used to characterize stratification in water tanks for discharging at low flow rates," Renewable Energy, Elsevier, vol. 35(10), pages 2192-2199.
    11. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    12. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    13. Mondol, Jayanta Deb & Smyth, Mervyn & Zacharopoulos, Aggelos, 2011. "Experimental characterisation of a novel heat exchanger for a solar hot water application under indoor and outdoor conditions," Renewable Energy, Elsevier, vol. 36(6), pages 1766-1779.
    14. Zhang, Xingxing & Shen, Jingchun & Lu, Yan & He, Wei & Xu, Peng & Zhao, Xudong & Qiu, Zhongzhu & Zhu, Zishang & Zhou, Jinzhi & Dong, Xiaoqiang, 2015. "Active Solar Thermal Facades (ASTFs): From concept, application to research questions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 32-63.
    15. Garnier, Celine & Muneer, Tariq & Currie, John, 2018. "Numerical and empirical evaluation of a novel building integrated collector storage solar water heater," Renewable Energy, Elsevier, vol. 126(C), pages 281-295.
    16. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    17. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    18. Guo, J.J. & Wu, J.Y. & Wang, R.Z. & Li, S., 2011. "Experimental research and operation optimization of an air-source heat pump water heater," Applied Energy, Elsevier, vol. 88(11), pages 4128-4138.
    19. Bagdanavicius, Audrius & Jenkins, Nick, 2013. "Power requirements of ground source heat pumps in a residential area," Applied Energy, Elsevier, vol. 102(C), pages 591-600.
    20. Widén, Joakim & Wäckelgård, Ewa, 2010. "A high-resolution stochastic model of domestic activity patterns and electricity demand," Applied Energy, Elsevier, vol. 87(6), pages 1880-1892, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:5:p:1014-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.