IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i2p681-690.html
   My bibliography  Save this article

Annual variations of temperature in a sample of UK dwellings

Author

Listed:
  • Yohanis, Yigzaw Goshu
  • Mondol, Jayanta Deb

Abstract

The internal temperatures of 25 households in Northern Ireland were measured in each house at four locations: the bedrooms, living rooms, halls and kitchens, and analysed on seasonal, monthly and daily bases. In 80% of the homes the winter average daily temperature was between 15 °C and 20 °C and in summer between 20 °C and 23 °C, therefore maintaining a reasonably comfortable temperature throughout the year. In 14% of the homes, the daily average temperature was above 21 °C throughout the year, suggesting a higher household temperature than required for comfort, thus exhibiting wasteful energy behaviour. Three percent of the homes did not use their heating adequately and the winter average temperature was below 15 °C. For the majority of households, the highest indoor temperature was in August and the lowest in February. In general the peak temperatures of households occur in the evening after 8:00 pm. The peak bedroom temperatures occur between 10:00 pm and midnight and in the morning after 8:00 am. The peak living room temperature is generally in the evening while it is occupied. Correlations between the temperature difference between indoor and outdoor temperatures with outdoor temperature have been developed for each house and the four locations. The relationship between the fluctuations of average daily temperature with annual average temperature has been established.

Suggested Citation

  • Yohanis, Yigzaw Goshu & Mondol, Jayanta Deb, 2010. "Annual variations of temperature in a sample of UK dwellings," Applied Energy, Elsevier, vol. 87(2), pages 681-690, February.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:2:p:681-690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00314-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deering, S. & Newborough, M. & Probert, S. D., 1993. "Rescheduling electricity demands in domestic buildings," Applied Energy, Elsevier, vol. 44(1), pages 1-62.
    2. Mullaly, Cathy, 1998. "Home energy use behaviour: a necessary component of successful local government home energy conservation (LGHEC) programs," Energy Policy, Elsevier, vol. 26(14), pages 1041-1052, December.
    3. Peeters, Leen & Dear, Richard de & Hensen, Jan & D'haeseleer, William, 2009. "Thermal comfort in residential buildings: Comfort values and scales for building energy simulation," Applied Energy, Elsevier, vol. 86(5), pages 772-780, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hughes, Caroline & Natarajan, Sukumar & Liu, Chunde & Chung, Woong June & Herrera, Manuel, 2019. "Winter thermal comfort and health in the elderly," Energy Policy, Elsevier, vol. 134(C).
    2. Daniel Olsson & Peter Filipsson & Anders Trüschel, 2023. "Feedback Control in Swedish Multi-Family Buildings for Lower Energy Demand and Assured Indoor Temperature—Measurements and Interviews," Energies, MDPI, vol. 16(18), pages 1-14, September.
    3. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    4. Yohanis, Yigzaw Goshu, 2012. "Domestic energy use and householders' energy behaviour," Energy Policy, Elsevier, vol. 41(C), pages 654-665.
    5. Dodds, Paul E., 2014. "Integrating housing stock and energy system models as a strategy to improve heat decarbonisation assessments," Applied Energy, Elsevier, vol. 132(C), pages 358-369.
    6. Vadodaria, K. & Loveday, D.L. & Haines, V., 2014. "Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis," Energy Policy, Elsevier, vol. 64(C), pages 252-262.
    7. Llovera, Jordi & Potau, Xavi & Medrano, Marc & Cabeza, Luisa F., 2011. "Design and performance of energy-efficient solar residential house in Andorra," Applied Energy, Elsevier, vol. 88(4), pages 1343-1353, April.
    8. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2019. "The role of environmental values, socio-demographics and building characteristics in setting room temperatures in winter," Energy, Elsevier, vol. 171(C), pages 1183-1192.
    9. Neves, Catarina & Oliveira, Tiago, 2021. "Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yohanis, Yigzaw Goshu, 2012. "Domestic energy use and householders' energy behaviour," Energy Policy, Elsevier, vol. 41(C), pages 654-665.
    2. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    3. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    4. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    5. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    7. Rama Curiel, José Adrián & Thakur, Jagruti, 2022. "A novel approach for Direct Load Control of residential air conditioners for Demand Side Management in developing regions," Energy, Elsevier, vol. 258(C).
    8. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    9. Arteconi, Alessia & Patteeuw, Dieter & Bruninx, Kenneth & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2016. "Active demand response with electric heating systems: Impact of market penetration," Applied Energy, Elsevier, vol. 177(C), pages 636-648.
    10. Filippín, C. & Flores Larsen, S., 2012. "Summer thermal behaviour of compact single family housing in a temperate climate in Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3439-3455.
    11. Roberto Robledo-Fava & Mónica C. Hernández-Luna & Pedro Fernández-de-Córdoba & Humberto Michinel & Sonia Zaragoza & A Castillo-Guzman & Romeo Selvas-Aguilar, 2019. "Analysis of the Influence Subjective Human Parameters in the Calculation of Thermal Comfort and Energy Consumption of Buildings," Energies, MDPI, vol. 12(8), pages 1-23, April.
    12. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    13. Crockett, R. G. M. & Newborough, M. & Highgate, D. J. & Probert, S. D., 1995. "Electrolyser-based electricity management," Applied Energy, Elsevier, vol. 51(3), pages 249-263.
    14. Lorenzo Rapone & Afaq A. Butt & Roel C. G. M. Loonen & Giacomo Salvadori & Francesco Leccese, 2024. "Investigating Advanced Building Envelopes for Energy Efficiency in Prefab Temporary Post-Disaster Housing," Energies, MDPI, vol. 17(9), pages 1-21, April.
    15. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    16. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    17. Krüger, E.L. & Laroca, C., 2010. "Thermal performance evaluation of a low-cost housing prototype made with plywood panels in Southern Brazil," Applied Energy, Elsevier, vol. 87(2), pages 661-672, February.
    18. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
    19. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    20. Dalia Streimikiene & Jolita Vveinhardt, 2015. "Community based social marketing for implementation of energy saving targets at local level," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 17(39), pages 723-723, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:2:p:681-690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.