IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10265-d891479.html
   My bibliography  Save this article

A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective

Author

Listed:
  • Hridoy Roy

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Samiha Raisa Alam

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Rayhan Bin-Masud

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Tonima Rahman Prantika

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Md. Nahid Pervez

    (Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy)

  • Md. Shahinoor Islam

    (Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh)

  • Vincenzo Naddeo

    (Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy)

Abstract

Municipal solid waste (MSW) management has become a major concern for developing countries. The physical and chemical aspects of MSW management and infrastructure need to be analyzed critically to solve the existing socio-economic problem. Currently, MSW production is 2.01 billion tonnes/yr. In developing countries, improper management of MSW poses serious environmental and public health risks. Depending on the socio-economic framework of a country, several MSW management procedures have been established, including landfilling, thermal treatment, and chemical treatment. Most of the MSW produced in underdeveloped and developing countries such as Bangladesh, India, and Pakistan is dumped into open landfills, severely affecting the environment. Waste-to-Energy (WTE) projects based on thermal treatments, e.g., incineration, pyrolysis, and gasification, can be feasible alternatives to conventional technologies. This research has explored a comprehensive method to evaluate MSW characteristics and management strategies from a global and Bangladesh perspective. The benefits, challenges, economic analysis, and comparison of MSW-based WTE projects have been analyzed concisely. Implementing the WTE project in developing countries can reduce unsupervised landfill and greenhouse gas (GHG) emissions. Alternative solutions and innovations have been discussed to overcome the high capital costs and infrastructural deficiencies. By 2050, Bangladesh can establish a total revenue (electricity sales and carbon credit revenue) of USD 751 million per year in Dhaka and Chittagong only. The landfill gas (LFG) recovery, waste recycling. and pyrolysis for energy production, syngas generation, and metal recovery are possible future directions of MSW management. The MSW management scenario in developing countries can be upgraded by improving waste treatment policies and working with government, academicians, and environmentalists together.

Suggested Citation

  • Hridoy Roy & Samiha Raisa Alam & Rayhan Bin-Masud & Tonima Rahman Prantika & Md. Nahid Pervez & Md. Shahinoor Islam & Vincenzo Naddeo, 2022. "A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10265-:d:891479
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10265/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10265/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitrios Mathioudakis & Panagiotis Karageorgis & Konstantina Papadopoulou & Thomas Fruergaard Astrup & Gerasimos Lyberatos, 2022. "Environmental and Economic Assessment of Alternative Food Waste Management Scenarios," Sustainability, MDPI, vol. 14(15), pages 1-27, August.
    2. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    3. Muhammad Rashid Iqbal & Abeywickrama Bamunusin Kankanamge Thilini Piumali & Nadeej Hansaraj Priyankara & Alagiyawanna Mohottalalage Nayana Alagiyawanna & Laksiri Chandana Kurukulasuriya & Ken Kawamoto, 2022. "Characterization of Physicochemical and Mechanical Properties of Dumped Municipal Solid Waste in Sri Lanka as Affected by the Climate Zone and Dumping Age," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    4. Hongzhong Fan & Hossain Md Ismail & Sultanuzzaman Md Reza, 2018. "Technological Innovation, Infrastructure and Industrial Growth in Bangladesh: Empirical Evidence from ARDL and Granger Causality Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(7), pages 964-985.
    5. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective LCA Study," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    6. Safwat Hemidat & Ouafa Achouri & Loubna El Fels & Sherien Elagroudy & Mohamed Hafidi & Benabbas Chaouki & Mostafa Ahmed & Isla Hodgkinson & Jinyang Guo, 2022. "Solid Waste Management in the Context of a Circular Economy in the MENA Region," Sustainability, MDPI, vol. 14(1), pages 1-24, January.
    7. Hongzhong Fan & Hossain Md Ismail & Sultanuzzaman Md Reza, 2018. "Technological Innovation, Infrastructure and Industrial Growth in Bangladesh: Empirical Evidence from ARDL and Granger Causality Approach," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(7), pages 964-985, July.
    8. Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    9. D'Adamo, Idiano & Gastaldi, Massimo & Rosa, Paolo, 2020. "Recycling of end-of-life vehicles: Assessing trends and performances in Europe," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    10. Sukholthaman, Pitchayanin & Shirahada, Kunio, 2015. "Technological challenges for effective development towards sustainable waste management in developing countries: Case study of Bangkok, Thailand," Technology in Society, Elsevier, vol. 43(C), pages 231-239.
    11. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    12. Prawisudha, Pandji & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Coal alternative fuel production from municipal solid wastes employing hydrothermal treatment," Applied Energy, Elsevier, vol. 90(1), pages 298-304.
    13. Ihsanullah Sohoo & Marco Ritzkowski & Muhammad Sultan & Muhammad Farooq & Kerstin Kuchta, 2022. "Conceptualization of Bioreactor Landfill Approach for Sustainable Waste Management in Karachi, Pakistan," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    14. Jian Yang & Zhenying Li & Rufei Wei & Di Zhou & Hongming Long & Jiaxin Li & Chunbao (Charles) Xu, 2022. "Co-Combustion of Food Solid Wastes and Pulverized Coal for Blast Furnace Injection: Characteristics, Kinetics, and Superiority," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    15. José María Fernández-González & Carmen Díaz-López & Jaime Martín-Pascual & Montserrat Zamorano, 2020. "Recycling Organic Fraction of Municipal Solid Waste: Systematic Literature Review and Bibliometric Analysis of Research Trends," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    16. Kasım Şimşek & Selçuk Alp, 2022. "Evaluation of Landfill Site Selection by Combining Fuzzy Tools in GIS-Based Multi-Criteria Decision Analysis: A Case Study in Diyarbakır, Turkey," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    17. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. José Luis Cárdenas-Talero & Jorge Antonio Silva-Leal & Andrea Pérez-Vidal & Patricia Torres-Lozada, 2022. "The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    19. Deborah Panepinto & Mariachiara Zanetti, 2021. "Technical and Environmental Comparison among Different Municipal Solid Waste Management Scenarios," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    20. Lemesa Hirpe & Chunho Yeom, 2021. "Municipal Solid Waste Management Policies, Practices, and Challenges in Ethiopia: A Systematic Review," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    21. Navarro Ferronato & Vincenzo Torretta, 2019. "Waste Mismanagement in Developing Countries: A Review of Global Issues," IJERPH, MDPI, vol. 16(6), pages 1-28, March.
    22. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel David S. Anonas & Francis Darwin T. Eugenio & BenJeMar-Hope F. Flores & Paul Heherson M. Balite & Jan Goran T. Tomacruz & Lawrence A. Limjuco & Joey D. Ocon, 2023. "From Waste to Renewable Energy: A Policy Review on Waste-to-Energy in the Philippines," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    2. Nikolay S. Ivanov & Arlan Z. Abilmagzhanov & Oleg S. Kholkin & Iskander E. Adelbaev, 2024. "Comprehensive Study of Energy Characteristics and Biohazard Assessment of Municipal Solid Waste from the Landfill of the City of Atyrau," Clean Technol., MDPI, vol. 6(1), pages 1-13, January.
    3. Ferdoush, Md. Ruhul & Aziz, Ridwan Al & Karmaker, Chitra Lekha & Debnath, Binoy & Limon, Mohammad Hossain & Bari, A.B.M. Mainul, 2024. "Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability," Innovation and Green Development, Elsevier, vol. 3(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongzhong Fan & Md Ismail Hossain & Mollah Aminul Islam & Yassin Elshain Yahia, 2019. "The Impact of Trade, Technology and Growth on Environmental Deterioration of China and India," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(1), pages 1-29, January.
    2. Alvarado, Rafael & Murshed, Muntasir & Cifuentes-Faura, Javier & Işık, Cem & Razib Hossain, Mohammad & Tillaguango, Brayan, 2023. "Nexuses between rent of natural resources, economic complexity, and technological innovation: The roles of GDP, human capital and civil liberties," Resources Policy, Elsevier, vol. 85(PA).
    3. Ahmed Shaban & Fatma-Elzahraa Zaki & Islam H. Afefy & Giulio Di Gravio & Andrea Falegnami & Riccardo Patriarca, 2022. "An Optimization Model for the Design of a Sustainable Municipal Solid Waste Management System," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    5. EL AIDI Abir & MOUSSANE Aboutayeb & TARBALOUTI Essaid, 2024. "The Effects of Technological Innovation on Sustainable Development in Morocco: Does the Transition to Social Innovation Matter?," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(5), pages 901-927, May.
    6. B. T. Ramesh & Javed Sayyad & Arunkumar Bongale & Anupkumar Bongale, 2022. "Extraction and Performance Analysis of Hydrocarbons from Waste Plastic Using the Pyrolysis Process," Energies, MDPI, vol. 15(24), pages 1-10, December.
    7. Preethu Rahman & Zhihe Zhang & Mohammad Musa, 2023. "Do technological innovation, foreign investment, trade and human capital have a symmetric effect on economic growth? Novel dynamic ARDL simulation study on Bangladesh," Economic Change and Restructuring, Springer, vol. 56(2), pages 1327-1366, April.
    8. Md Ismail Hossain & Md Istiak Hossain & Mollah Aminul Islam & Md Reza Sultanuzzaman, 2022. "Does Foreign Aid Have an Expected Role in the Economic Growth of Bangladesh? An Analysis in ARDL Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 12(6), pages 113-126, November.
    9. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Yassin Elshain Yahia & Haiyun Liu & Abdalla Sirag & Sayyed Sadaqat Hussain Shah, 2020. "The Impacts of Intra-Trade on Industrialization: Evidence from COMESA," Asian Development Policy Review, Asian Economic and Social Society, vol. 8(2), pages 75-101, June.
    11. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Roman Sass, 2023. "Municipal-Based Biowaste Conversion for Developing and Promoting Renewable Energy in Smart Cities," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    12. Md. Hasanur Rahman & Alfarunnahar Ruma & Mohammad Nasir Hossain & Rifat Nahrin & Shapan Chandra Majumder, 2021. "Examine the Empirical Relationship between Energy Consumption and Industrialization in Bangladesh: Granger Causality Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 121-129.
    13. Martha María Mayes-Ramírez & Francisco Jesús Gálvez-Sánchez & Ángel Fermín Ramos-Ridao & Valentín Molina-Moreno, 2023. "Urban Waste: Visualizing the Academic Literature through Bibliometric Analysis and Systematic Review," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    14. Md. Shafiqul Islam, 2021. "Dynamics of energy use, technological innovation, economic growth, and trade openness in Bangladesh," Economics Bulletin, AccessEcon, vol. 41(3), pages 997-1008.
    15. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    16. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    17. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    18. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    19. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    20. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10265-:d:891479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.