Thermochemical treatment of E-waste from small household appliances using highly pre-heated nitrogen-thermogravimetric investigation and pyrolysis kinetics
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sand, U. & Sandberg, J. & Larfeldt, J. & Bel Fdhila, R., 2008. "Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log," Applied Energy, Elsevier, vol. 85(12), pages 1208-1224, December.
- Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- José Juan Alvarado Flores & José Guadalupe Rutiaga Quiñones & María Liliana Ávalos Rodríguez & Jorge Víctor Alcaraz Vera & Jaime Espino Valencia & Santiago José Guevara Martínez & Francisco Márquez Mo, 2020. "Thermal Degradation Kinetics and FT-IR Analysis on the Pyrolysis of Pinus pseudostrobus , Pinus leiophylla and Pinus montezumae as Forest Waste in Western Mexico," Energies, MDPI, vol. 13(4), pages 1-25, February.
- Garlapati, Vijay Kumar, 2016. "E-waste in India and developed countries: Management, recycling, business and biotechnological initiatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 874-881.
- Awasthi, Abhishek Kumar & Li, Jinhui, 2017. "Management of electrical and electronic waste: A comparative evaluation of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 434-447.
- Beatrice Beccagutti & Lorenzo Cafiero & Massimiliana Pietrantonio & Stefano Pucciarmati & Riccardo Tuffi & Stefano Vecchio Ciprioti, 2016. "Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, I.I. & Gupta, A.K., 2011. "Particle size, porosity and temperature effects on char conversion," Applied Energy, Elsevier, vol. 88(12), pages 4667-4677.
- AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
- Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
- Wickramaarachchi, W.A.M.K.P. & Narayana, Mahinsasa, 2020. "Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling," Renewable Energy, Elsevier, vol. 146(C), pages 1153-1165.
- Jon T. Schroeder & Ava L. Labuzetta & Thomas A. Trabold, 2020. "Assessment of Dehydration as a Commercial-Scale Food Waste Valorization Strategy," Sustainability, MDPI, vol. 12(15), pages 1-13, July.
- Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
- Nawaz, Ahmad & Kumar, Pradeep, 2023. "Thermocatalytic pyrolysis of Sesbania bispinosa biomass over Y-zeolite catalyst towards clean fuel and valuable chemicals," Energy, Elsevier, vol. 263(PB).
- Xiong, Shanshan & He, Jiang & Yang, Zhongqing & Guo, Mingnv & Yan, Yunfei & Ran, Jingyu, 2020. "Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture," Energy, Elsevier, vol. 194(C).
- Sandberg, Jan & Fdhila, Rebei Bel & Dahlquist, Erik & Avelin, Anders, 2011. "Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler," Applied Energy, Elsevier, vol. 88(5), pages 1813-1824, May.
- Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
- Gong, Junhui & Zhang, Mingrui, 2022. "Pyrolysis and autoignition behaviors of oriented strand board under power-law radiation," Renewable Energy, Elsevier, vol. 182(C), pages 946-957.
- Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
- Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
- Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
- Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
- Zhan, Xiuli & Zhou, ZhiJie & Wang, Fuchen, 2010. "Catalytic effect of black liquor on the gasification reactivity of petroleum coke," Applied Energy, Elsevier, vol. 87(5), pages 1710-1715, May.
- Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
- Sanjeev Yadav & Priyanka Katiyar & Mohammed K. Al Mesfer & Mohd Danish, 2023. "Syngas production from thermochemical conversion of mixed food waste: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
- Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
- Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
More about this item
Keywords
WEEE management Thermochemical treatment Highly pre-heated agent Thermogravimetry Pyrolysis kinetics;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:922-929. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.