IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp1045-1062.html
   My bibliography  Save this article

Fate of a biomass particle during CO2 gasification: A mathematical model under entrained flow condition at high temperature

Author

Listed:
  • Kibria, M.A.
  • Sripada, Pramod
  • Woo, M.W.
  • Bhattacharya, Sankar

Abstract

The gasification reactions of solid carbonaceous particles such as biomass or coal are complex. Multiple physical phenomena and operating conditions of gasifier simultaneously govern the response of these reactions during carbon conversion. Direct or indirect coupling among the involved transport mechanisms of heat and mass transfer and the chemical kinetics at the active site of the solid impact the overall gasification performance. This study addresses a mathematical model during CO2 gasification of a spherical biomass particle subject to entrained flow condition at high temperature. An algorithm is developed to account both internal and external mass transport limitation during char conversion while devolatilization event occurs in parallel. The prediction of overall carbon conversion is compared to experimental data from a bench scale entrained flow reactor. The results show almost 60% devolatilization is completed when the char gasification reaction starts and the char conversion is <0.8% when the particle is completely devolatilized. The effect of the boundary layer is important during the devolatilization event that provides heat and mass transfer resistance. Complete carbon conversion for 90 μm particle can be achieved at 1200 °C temperature and 40% concentration of CO2 with a time close to 10 s.

Suggested Citation

  • Kibria, M.A. & Sripada, Pramod & Woo, M.W. & Bhattacharya, Sankar, 2019. "Fate of a biomass particle during CO2 gasification: A mathematical model under entrained flow condition at high temperature," Energy, Elsevier, vol. 168(C), pages 1045-1062.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:1045-1062
    DOI: 10.1016/j.energy.2018.11.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    2. Ahmed, I.I. & Gupta, A.K., 2010. "Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics," Applied Energy, Elsevier, vol. 87(1), pages 101-108, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kan, Xiang & Chen, Xiaoping & Shen, Ye & Lapkin, Alexei A. & Kraft, Markus & Wang, Chi-Hwa, 2019. "Box-Behnken design based CO2 co-gasification of horticultural waste and sewage sludge with addition of ash from waste as catalyst," Applied Energy, Elsevier, vol. 242(C), pages 1549-1561.
    2. Mostafa, Mohamed E. & He, Limo & Xu, Jun & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "Investigating the effect of integrated CO2 and H2O on the reactivity and kinetics of biomass pellets oxy-steam combustion using new double parallel volumetric model (DVM)," Energy, Elsevier, vol. 179(C), pages 343-357.
    3. Wang, Lijun & Du, Xiaocheng & Chen, Junqi & Wu, Zhonggang, 2021. "Numerical study on characteristics of biomass oxygen enriched gasification in the new gasifier on an experimental basis," Renewable Energy, Elsevier, vol. 179(C), pages 815-827.
    4. Kibria, M.A. & Sripada, Pramod & Bhattacharya, Sankar, 2020. "Steady state kinetic model for entrained flow CO2 gasification of biomass at high temperature," Energy, Elsevier, vol. 196(C).
    5. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    2. Nzihou, Ange & Stanmore, Brian & Sharrock, Patrick, 2013. "A review of catalysts for the gasification of biomass char, with some reference to coal," Energy, Elsevier, vol. 58(C), pages 305-317.
    3. Jon T. Schroeder & Ava L. Labuzetta & Thomas A. Trabold, 2020. "Assessment of Dehydration as a Commercial-Scale Food Waste Valorization Strategy," Sustainability, MDPI, vol. 12(15), pages 1-13, July.
    4. Ye-Eun Lee & Jun-Ho Jo & Sun-Min Kim & Yeong-Seok Yoo, 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing," Energies, MDPI, vol. 10(2), pages 1-13, February.
    5. Nawaz, Ahmad & Kumar, Pradeep, 2023. "Thermocatalytic pyrolysis of Sesbania bispinosa biomass over Y-zeolite catalyst towards clean fuel and valuable chemicals," Energy, Elsevier, vol. 263(PB).
    6. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    7. Xiong, Shanshan & He, Jiang & Yang, Zhongqing & Guo, Mingnv & Yan, Yunfei & Ran, Jingyu, 2020. "Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture," Energy, Elsevier, vol. 194(C).
    8. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).
    9. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    10. Nipattummakul, Nimit & Ahmed, Islam I. & Kerdsuwan, Somrat & Gupta, Ashwani K., 2012. "Steam gasification of oil palm trunk waste for clean syngas production," Applied Energy, Elsevier, vol. 92(C), pages 778-782.
    11. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    12. Ahmed, I.I. & Gupta, A.K., 2011. "Particle size, porosity and temperature effects on char conversion," Applied Energy, Elsevier, vol. 88(12), pages 4667-4677.
    13. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    14. Kantarelis, E. & Yang, W. & Blasiak, W. & Forsgren, C. & Zabaniotou, A., 2011. "Thermochemical treatment of E-waste from small household appliances using highly pre-heated nitrogen-thermogravimetric investigation and pyrolysis kinetics," Applied Energy, Elsevier, vol. 88(3), pages 922-929, March.
    15. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    16. Wang, Qingxiang & Chen, Zhichao & Li, Liankai & Zeng, Lingyan & Li, Zhengqi, 2020. "Achievement in ultra-low-load combustion stability for an anthracite- and down-fired boiler after applying novel swirl burners: From laboratory experiments to industrial applications," Energy, Elsevier, vol. 192(C).
    17. Zhan, Xiuli & Zhou, ZhiJie & Wang, Fuchen, 2010. "Catalytic effect of black liquor on the gasification reactivity of petroleum coke," Applied Energy, Elsevier, vol. 87(5), pages 1710-1715, May.
    18. Karmee, Sanjib Kumar, 2016. "Liquid biofuels from food waste: Current trends, prospect and limitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 945-953.
    19. Sanjeev Yadav & Priyanka Katiyar & Mohammed K. Al Mesfer & Mohd Danish, 2023. "Syngas production from thermochemical conversion of mixed food waste: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
    20. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:1045-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.