IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1107-d81680.html
   My bibliography  Save this article

Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods

Author

Listed:
  • Beatrice Beccagutti

    (Department for Sustainability, ENEA—Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, Rome 00123, Italy)

  • Lorenzo Cafiero

    (Department for Sustainability, ENEA—Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, Rome 00123, Italy)

  • Massimiliana Pietrantonio

    (Department for Sustainability, ENEA—Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, Rome 00123, Italy)

  • Stefano Pucciarmati

    (Department for Sustainability, ENEA—Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, Rome 00123, Italy)

  • Riccardo Tuffi

    (Department for Sustainability, ENEA—Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, Rome 00123, Italy)

  • Stefano Vecchio Ciprioti

    (Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, Rome 00161, Italy)

Abstract

Bromine and chlorine are almost ubiquitous in waste of electrical and electronic equipment (WEEE) and the knowledge of their content in the plastic fraction is an essential step for proper end of life management. The aim of this study is to compare the following analytical methods: energy dispersive X-ray fluorescence spectroscopy (ED-XRF), ion chromatography (IC), ion-selective electrodes (ISEs), and elemental analysis for the quantitative determination of chlorine and bromine in four real samples taken from different WEEE treatment plants, identifying the best analytical technique for waste management workers. Home-made plastic standard materials with known concentrations of chlorine or bromine have been used for calibration of ED-XRF and to test the techniques before the sample analysis. Results showed that IC and ISEs, based upon dissolution of the products of the sample combustion, have not always achieved a quantitative absorption of the analytes in the basic solutions and that bromine could be underestimated since several oxidation states occur after combustion. Elemental analysis designed for chlorine determination is subjected to strong interference from bromine and required frequent regeneration and recalibration of the measurement cell. The most reliable method seemed to be the non-destructive ED-XRF. Calibration with home-made standards, having a similar plastic matrix of the samples, enabled us to carry out quantitative determinations, which have been revealed to be satisfactorily accurate and precise. In all the analyzed samples a total concentration of chlorine and/or bromine between 0.6 and 4 w/w% was detected, compromising the feasibility of a mechanical recycling and suggesting the exploration of an alternative route for managing these plastic wastes.

Suggested Citation

  • Beatrice Beccagutti & Lorenzo Cafiero & Massimiliana Pietrantonio & Stefano Pucciarmati & Riccardo Tuffi & Stefano Vecchio Ciprioti, 2016. "Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1107-:d:81680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kantarelis, E. & Yang, W. & Blasiak, W. & Forsgren, C. & Zabaniotou, A., 2011. "Thermochemical treatment of E-waste from small household appliances using highly pre-heated nitrogen-thermogravimetric investigation and pyrolysis kinetics," Applied Energy, Elsevier, vol. 88(3), pages 922-929, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Holubčík & Ivana Klačková & Peter Ďurčanský, 2020. "Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic," Energies, MDPI, vol. 13(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Juan Alvarado Flores & José Guadalupe Rutiaga Quiñones & María Liliana Ávalos Rodríguez & Jorge Víctor Alcaraz Vera & Jaime Espino Valencia & Santiago José Guevara Martínez & Francisco Márquez Mo, 2020. "Thermal Degradation Kinetics and FT-IR Analysis on the Pyrolysis of Pinus pseudostrobus , Pinus leiophylla and Pinus montezumae as Forest Waste in Western Mexico," Energies, MDPI, vol. 13(4), pages 1-25, February.
    2. Awasthi, Abhishek Kumar & Li, Jinhui, 2017. "Management of electrical and electronic waste: A comparative evaluation of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 434-447.
    3. Garlapati, Vijay Kumar, 2016. "E-waste in India and developed countries: Management, recycling, business and biotechnological initiatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 874-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1107-:d:81680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.