IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i7-8p1201-1209.html
   My bibliography  Save this article

Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes

Author

Listed:
  • Li, T.X.
  • Wang, R.Z.
  • Kiplagat, J.K.
  • Wang, L.W.

Abstract

A consolidated composite sorbent made from manganese chloride and expanded graphite was produced for sorption deep-freezing processes and used for cold production at a temperature as low as -35 °C. Experimental results showed that the addition of a porous graphite matrix can prevent the agglomeration and the attenuation of sorption capacity of reactive salt. The composite sorbent could incorporate 0.537 kg of ammonia per kg of reactive salt and the average specific cooling power (SCP) obtained varied between 200 W kg-1 and 700 W kg-1 when the evaporation temperature ranged from -35 °C to 0 °C. The analysis of the data suggested that the heat transfer characteristic in the composite sorbent was strongly influenced by chemical reaction and the conversion rate was very sensitive to the constraint temperatures. The SCP and coefficient of performance (COP) of a simple sorption deep-freezing system were 350 W kg-1 and 0.34, respectively, at the generation temperature of 180 °C, the heat sink temperature of 25 °C and the evaporation temperature of -30 °C.

Suggested Citation

  • Li, T.X. & Wang, R.Z. & Kiplagat, J.K. & Wang, L.W., 2009. "Performance study of a consolidated manganese chloride-expanded graphite compound for sorption deep-freezing processes," Applied Energy, Elsevier, vol. 86(7-8), pages 1201-1209, July.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1201-1209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00156-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aihara, Masahiko & Nagai, Toshiyuki & Matsushita, Junro & Negishi, Yoichi & Ohya, Haruhiko, 2001. "Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction," Applied Energy, Elsevier, vol. 69(3), pages 225-238, July.
    2. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    3. Le Pierrès, Nolwenn & Stitou, Driss & Mazet, Nathalie, 2007. "New deep-freezing process using renewable low-grade heat: From the conceptual design to experimental results," Energy, Elsevier, vol. 32(4), pages 600-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
    2. Mikos-Nuszkiewicz, Natalia & Furmański, Piotr & Łapka, Piotr, 2023. "A mathematical model of charging and discharging processes in a thermochemical energy storage reactor using the hydrated potassium carbonate as a thermochemical material," Energy, Elsevier, vol. 263(PA).
    3. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    4. Yang, Zhiyao & Qu, Ming & Gluesenkamp, Kyle R., 2020. "Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate," Energy, Elsevier, vol. 207(C).
    5. Jiang, L. & Wang, L.W. & Luo, W.L. & Wang, R.Z., 2015. "Experimental study on working pairs for two-stage chemisorption freezing cycle," Renewable Energy, Elsevier, vol. 74(C), pages 287-297.
    6. Li, T.X. & Xu, J.X. & Yan, T. & Wang, R.Z., 2016. "Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage," Energy, Elsevier, vol. 107(C), pages 347-359.
    7. Takasu, Hiroki & Hoshino, Hitoshi & Tamura, Yoshiro & Kato, Yukitaka, 2019. "Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite," Applied Energy, Elsevier, vol. 240(C), pages 1-5.
    8. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
    9. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    10. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    2. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    3. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    4. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    5. Weckerle, C. & Nasri, M. & Hegner, R. & Linder, M. & Bürger, I., 2019. "A metal hydride air-conditioning system for fuel cell vehicles – Performance investigations," Applied Energy, Elsevier, vol. 256(C).
    6. Americano da Costa, Marcus V. & Pasamontes, Manuel & Normey-Rico, Julio E. & Guzmán, José L. & Berenguel, Manuel, 2013. "Viability and application of ethanol production coupled with solar cooling," Applied Energy, Elsevier, vol. 102(C), pages 501-509.
    7. Li, Caili & Li, Yingjie & Fang, Yi & Zhang, Chunxiao & Ren, Yu, 2024. "TiO2/MnFe2O4 co-modified alkaline papermaking waste for CaO-CaCO3 thermochemical energy storage," Applied Energy, Elsevier, vol. 362(C).
    8. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    9. Ali Alahmer & Xiaolin Wang & K. C. Amanul Alam, 2020. "Dynamic and Economic Investigation of a Solar Thermal-Driven Two-Bed Adsorption Chiller under Perth Climatic Conditions," Energies, MDPI, vol. 13(4), pages 1-19, February.
    10. Palomba, Valeria & Vasta, Salvatore & Freni, Angelo & Pan, Quanwen & Wang, Ruzhu & Zhai, Xiaoqiang, 2017. "Increasing the share of renewables through adsorption solar cooling: A validated case study," Renewable Energy, Elsevier, vol. 110(C), pages 126-140.
    11. Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Gordeeva, Larisa G. & Solovyeva, Marina V. & Aristov, Yuri I., 2016. "NH2-MIL-125 as a promising material for adsorptive heat transformation and storage," Energy, Elsevier, vol. 100(C), pages 18-24.
    13. Eicker, Ursula & Pietruschka, Dirk & Haag, Maximilian & Schmitt, Andreas, 2015. "Systematic design and analysis of solar thermal cooling systems in different climates," Renewable Energy, Elsevier, vol. 80(C), pages 827-836.
    14. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    15. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    16. Seol, Sung-Hoon & Nagano, Katsunori & Togawa, Junya, 2020. "Simulation on annual performance of solar adsorption heat pump system using composite natural mesoporous material in different metrological conditions," Renewable Energy, Elsevier, vol. 162(C), pages 1587-1604.
    17. M.T. Nitsas & E.G. Papoutsis & I.P. Koronaki, 2020. "Experimental Performance Evaluation of an Integrated Solar-Driven Adsorption System in Terms of Thermal Storage and Cooling Capacity," Energies, MDPI, vol. 13(22), pages 1-15, November.
    18. Audah, N. & Ghaddar, N. & Ghali, K., 2011. "Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs," Applied Energy, Elsevier, vol. 88(11), pages 3726-3736.
    19. Ji, Jie & Wang, Yanqiu & Yuan, Weiqi & Sun, Wei & He, Wei & Guo, Chao, 2014. "Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system," Applied Energy, Elsevier, vol. 136(C), pages 110-118.
    20. Sarah Roger-Lund & Jo Darkwa & Mark Worall & John Calautit & Rabah Boukhanouf, 2024. "A Review of Thermochemical Energy Storage Systems for District Heating in the UK," Energies, MDPI, vol. 17(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:7-8:p:1201-1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.