IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v71y2014icp1-16.html
   My bibliography  Save this article

How to evaluate performance of net zero energy building – A literature research

Author

Listed:
  • Deng, S.
  • Wang, R.Z.
  • Dai, Y.J.

Abstract

NZEB (Net zero energy building) is regarded as an integrated solution to address problems of energy-saving, environmental protection, and CO2 emission reduction in the building section. NZEB could be even possible with electricity production if enough renewable energy could be used. Moreover, various building-service systems with renewable energy sources have been widely considered for potential applications in NZEB. All of these new features extend the technical boundary of the conventional energy-efficient buildings, attach a more profound implication to the sustainable development of building technology, and therefore pose a challenge to evaluation works on NZEB performance.

Suggested Citation

  • Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
  • Handle: RePEc:eee:energy:v:71:y:2014:i:c:p:1-16
    DOI: 10.1016/j.energy.2014.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214005568
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moura, Pedro S. & de Almeida, Aníbal T., 2010. "Multi-objective optimization of a mixed renewable system with demand-side management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1461-1468, June.
    2. Omer, Abdeen Mustafa, 2008. "Renewable building energy systems and passive human comfort solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1562-1587, August.
    3. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    4. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    5. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    6. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.
    9. Hughes, Ben Richard & Chaudhry, Hassam Nasarullah & Ghani, Saud Abdul, 2011. "A review of sustainable cooling technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3112-3120, August.
    10. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    11. Wang, R.Z. & Zhai, X.Q., 2010. "Development of solar thermal technologies in China," Energy, Elsevier, vol. 35(11), pages 4407-4416.
    12. Zhai, X.Q. & Wang, R.Z. & Wu, J.Y. & Dai, Y.J. & Ma, Q., 2008. "Design and performance of a solar-powered air-conditioning system in a green building," Applied Energy, Elsevier, vol. 85(5), pages 297-311, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    2. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    3. Heier, Johan & Bales, Chris & Martin, Viktoria, 2015. "Combining thermal energy storage with buildings – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1305-1325.
    4. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    5. Barreneche, Camila & Navarro, Lidia & de Gracia, Alvaro & Fernández, A. Inés & Cabeza, Luisa F., 2016. "In situ thermal and acoustic performance and environmental impact of the introduction of a shape-stabilized PCM layer for building applications," Renewable Energy, Elsevier, vol. 85(C), pages 281-286.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    8. Barreneche, Camila & Fernández, Ana Inés & Cabeza, Luisa F. & Cuypers, Ruud, 2015. "Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite," Applied Energy, Elsevier, vol. 137(C), pages 726-730.
    9. Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
    10. Franco, Alessandro & Salza, Pasquale, 2011. "Strategies for optimal penetration of intermittent renewables in complex energy systems based on techno-operational objectives," Renewable Energy, Elsevier, vol. 36(2), pages 743-753.
    11. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    12. Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
    13. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    14. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    15. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    16. O’Connor, Dominic & Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A novel design of a desiccant rotary wheel for passive ventilation applications," Applied Energy, Elsevier, vol. 179(C), pages 99-109.
    17. Miranda, Nicole D. & Renaldi, Renaldi & Khosla, Radhika & McCulloch, Malcolm D., 2021. "Bibliometric analysis and landscape of actors in passive cooling research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    19. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    20. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:71:y:2014:i:c:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.