IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v55y1996i1p1-19.html
   My bibliography  Save this article

Parabolic trough collector system for low temperature steam generation: Design and performance characteristics

Author

Listed:
  • Kalogirou, Soteris

Abstract

The collector's performance is tested according to Ashrae Standard 93, 19861. The collector's efficiency and incidence-angle modifier are measured. The test slope and intercept are found to be 0.387 and 0.638 respectively. The collector's time constant is less than one minute and the collector's acceptance angle obtained from the test is ±0.5°, which in combination with the tracking mechanism maximum error (± 0.2°) implies that the system works continuously at almost maximum possible efficiency.

Suggested Citation

  • Kalogirou, Soteris, 1996. "Parabolic trough collector system for low temperature steam generation: Design and performance characteristics," Applied Energy, Elsevier, vol. 55(1), pages 1-19, September.
  • Handle: RePEc:eee:appene:v:55:y:1996:i:1:p:1-19
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(96)00008-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, S.A. & Lloyd, S., 1992. "Use of solar Parabolic Trough Collectors for hot water production in Cyprus. A feasibility study," Renewable Energy, Elsevier, vol. 2(2), pages 117-124.
    2. Kalogirou, S. A. & Lloyd, S. & Ward, J. & Eleftheriou, P., 1994. "Design and performance characteristics of a parabolic-trough solar-collector system," Applied Energy, Elsevier, vol. 47(4), pages 341-354.
    3. Kalogirou, Soteris & Eleftheriou, Polyvios & Lloyd, Stephen & Ward, John, 1994. "Low cost high accuracy parabolic troughs construction and evaluation," Renewable Energy, Elsevier, vol. 5(1), pages 384-386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carnevale, Ennio A. & Ferrari, Lorenzo & Paganelli, Simone, 2011. "Investigation on the feasibility of integration of high temperature solar energy in a textile factory," Renewable Energy, Elsevier, vol. 36(12), pages 3517-3529.
    2. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    3. Reddy, K.S. & Ananthsornaraj, C., 2020. "Design, development and performance investigation of solar Parabolic Trough Collector for large-scale solar power plants," Renewable Energy, Elsevier, vol. 146(C), pages 1943-1957.
    4. Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
    5. Wang, Jun & Yang, Song & Jiang, Chuan & Yan, Qianwen & Lund, Peter D., 2017. "A novel 2-stage dish concentrator with improved optical performance for concentrating solar power plants," Renewable Energy, Elsevier, vol. 108(C), pages 92-97.
    6. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    7. Abd-Elhady, M.S. & Abd-Elkerim, A.N.A. & Ahmed, Seif A. & Halim, M.A. & Abu-Oqual, Ahmed, 2020. "Study the thermal performance of solar cookers by using metallic wires and nanographene," Renewable Energy, Elsevier, vol. 153(C), pages 108-116.
    8. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    9. Wu, Shaobing & Wang, Changmei & Tang, Runsheng, 2022. "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning," Renewable Energy, Elsevier, vol. 188(C), pages 437-449.
    10. Subramani, J. & Nagarajan, P.K. & Mahian, Omid & Sathyamurthy, Ravishankar, 2018. "Efficiency and heat transfer improvements in a parabolic trough solar collector using TiO2 nanofluids under turbulent flow regime," Renewable Energy, Elsevier, vol. 119(C), pages 19-31.
    11. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    12. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    13. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    14. Lubitz, William David, 2011. "Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1710-1719, May.
    15. Ng, Yi Cheng & Lipiński, Wojciech, 2012. "Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production," Energy, Elsevier, vol. 44(1), pages 720-731.
    16. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    17. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    18. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    19. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    20. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    21. García-Cortés, Silverio & Bello-García, Antonio & Ordóñez, Celestino, 2012. "Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment," Applied Energy, Elsevier, vol. 92(C), pages 815-821.
    22. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    23. Kalogirou, Soteris A, 2002. "Parabolic trough collectors for industrial process heat in Cyprus," Energy, Elsevier, vol. 27(9), pages 813-830.
    24. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    25. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
    3. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    4. Kalogirou, Soteris, 1997. "Design, construction, performance evaluation and economic analysis of an integrated collector storage system," Renewable Energy, Elsevier, vol. 12(2), pages 179-192.
    5. Taehong Sung & Sang Youl Yoon & Kyung Chun Kim, 2015. "A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle," Energies, MDPI, vol. 8(7), pages 1-12, July.
    6. Jaramillo, O.A. & Venegas-Reyes, E. & Aguilar, J.O. & Castrejón-García, R. & Sosa-Montemayor, F., 2013. "Parabolic trough concentrators for low enthalpy processes," Renewable Energy, Elsevier, vol. 60(C), pages 529-539.
    7. Majedul Islam & Prasad Yarlagadda & Azharul Karim, 2018. "Effect of the Orientation Schemes of the Energy Collection Element on the Optical Performance of a Parabolic Trough Concentrating Collector," Energies, MDPI, vol. 12(1), pages 1-20, December.
    8. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    9. Fernández-García, Aránzazu & Valenzuela, Loreto & Zarza, Eduardo & Rojas, Esther & Pérez, Manuel & Hernández-Escobedo, Quetzalcoatl & Manzano-Agugliaro, Francisco, 2018. "SMALL-SIZED parabolic-trough solar collectors: Development of a test loop and evaluation of testing conditions," Energy, Elsevier, vol. 152(C), pages 401-415.
    10. Reddy, K.S. & Singla, Hitesh & Natraj,, 2019. "Gravity & wind load analysis and optical study of solar parabolic trough collector with composite facets using optimized modelling approach," Energy, Elsevier, vol. 189(C).
    11. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    12. Laveet Kumar & Junaid Ahmed & Mamdouh El Haj Assad & M. Hasanuzzaman, 2022. "Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review," Energies, MDPI, vol. 15(22), pages 1-27, November.
    13. Natraj, & Rao, B.N. & Reddy, K.S., 2021. "Wind load and structural analysis for standalone solar parabolic trough collector," Renewable Energy, Elsevier, vol. 173(C), pages 688-703.
    14. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    15. Li, Li & Qu, Ming & Peng, Steve, 2017. "Performance evaluation of building integrated solar thermal shading system: Active solar energy usage," Renewable Energy, Elsevier, vol. 109(C), pages 576-585.
    16. Bakos, G.C. & Petroglou, D.A., 2014. "Simulation study of a large scale line-focus trough collector solar power plant in Greece," Renewable Energy, Elsevier, vol. 71(C), pages 1-7.
    17. Kalogirou, Soteris, 1997. "Solar water heating in Cyprus: current status of technology and problems," Renewable Energy, Elsevier, vol. 10(1), pages 107-112.
    18. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    19. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    20. Majedul Islam & Sarah Miller & Prasad Yarlagadda & Azharul Karim, 2017. "Investigation of the Effect of Physical and Optical Factors on the Optical Performance of a Parabolic Trough Collector," Energies, MDPI, vol. 10(11), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:55:y:1996:i:1:p:1-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.