IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp815-821.html
   My bibliography  Save this article

Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment

Author

Listed:
  • García-Cortés, Silverio
  • Bello-García, Antonio
  • Ordóñez, Celestino

Abstract

When a new design for a solar collector is developed it is necessary to guarantee that its intercept factor is good enough to produce the expected thermal jump. This factor is directly related with the fidelity of the trough geometry with respect to its theoretical design shape. This paper shows the work carried out to determine the real shape and the intercept factor of a new prototype of parabolic solar collector. Convergent photogrammetry with off-the-shelf equipment was used to obtain a 3D point cloud that is simultaneously oriented in space and adjusted to a parabolic cylinder in order to calculate the deviations from the ideal shape. The normal vectors at each point in the adjusted surface are calculated and used to determine the intercept factor. Deviations between adjusted shape and the theoretical one suggest mounting errors for some mirror facets, resulting in a global intercept factor slightly below the commonly accepted limit for this type of solar collector.

Suggested Citation

  • García-Cortés, Silverio & Bello-García, Antonio & Ordóñez, Celestino, 2012. "Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment," Applied Energy, Elsevier, vol. 92(C), pages 815-821.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:815-821
    DOI: 10.1016/j.apenergy.2011.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911005423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris, 1996. "Parabolic trough collector system for low temperature steam generation: Design and performance characteristics," Applied Energy, Elsevier, vol. 55(1), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, R. & Pérez, M. & Fernández-Garcia, A., 2013. "Modeling and co-simulation of a parabolic trough solar plant for industrial process heat," Applied Energy, Elsevier, vol. 106(C), pages 287-300.
    2. Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
    3. Xiao, Gang & Yang, Tianfeng & Ni, Dong & Cen, Kefa & Ni, Mingjiang, 2017. "A model-based approach for optical performance assessment and optimization of a solar dish," Renewable Energy, Elsevier, vol. 100(C), pages 103-113.
    4. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Nasrallah, Sassi, 2015. "Optical qualification of a solar parabolic concentrator using photogrammetry technique," Energy, Elsevier, vol. 90(P1), pages 403-416.
    5. Xu, Chengmu & Chen, Zhiping & Li, Ming & Zhang, Peng & Ji, Xu & Luo, Xi & Liu, Jiangtao, 2014. "Research on the compensation of the end loss effect for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 115(C), pages 128-139.
    6. Hachicha, A.A. & Rodríguez, I. & Capdevila, R. & Oliva, A., 2013. "Heat transfer analysis and numerical simulation of a parabolic trough solar collector," Applied Energy, Elsevier, vol. 111(C), pages 581-592.
    7. Arancibia-Bulnes, Camilo A. & Peña-Cruz, Manuel I. & Mutuberría, Amaia & Díaz-Uribe, Rufino & Sánchez-González, Marcelino, 2017. "A survey of methods for the evaluation of reflective solar concentrator optics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 673-684.
    8. Peter King & Christopher Sansom & Paul Comley, 2019. "Photogrammetry for Concentrating Solar Collector Form Measurement, Validated Using a Coordinate Measuring Machine," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    9. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
    10. Salamanca, Santiago & Merchán, Pilar & Adán, Antonio & Pérez, Emiliano, 2019. "An appraisal of the geometry and energy efficiency of parabolic trough collectors with laser scanners and image processing," Renewable Energy, Elsevier, vol. 134(C), pages 64-77.
    11. Gabriele Guidi & Umair Shafqat Malik & Andrea Manes & Stefano Cardamone & Massimo Fossati & Carla Lazzari & Claudio Volpato & Marco Giglio, 2020. "Laser Scanner-Based 3D Digitization for the Reflective Shape Measurement of a Parabolic Trough Collector," Energies, MDPI, vol. 13(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shaobing & Wang, Changmei & Tang, Runsheng, 2022. "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning," Renewable Energy, Elsevier, vol. 188(C), pages 437-449.
    2. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    3. Kalogirou, Soteris, 2003. "The potential of solar industrial process heat applications," Applied Energy, Elsevier, vol. 76(4), pages 337-361, December.
    4. Reddy, K.S. & Ananthsornaraj, C., 2020. "Design, development and performance investigation of solar Parabolic Trough Collector for large-scale solar power plants," Renewable Energy, Elsevier, vol. 146(C), pages 1943-1957.
    5. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    6. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    7. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2022. "Influence of the concentration ratio on the thermal and economic performance of parabolic trough collectors," Renewable Energy, Elsevier, vol. 181(C), pages 786-802.
    8. Coccia, Gianluca & Di Nicola, Giovanni & Sotte, Marco, 2015. "Design, manufacture, and test of a prototype for a parabolic trough collector for industrial process heat," Renewable Energy, Elsevier, vol. 74(C), pages 727-736.
    9. Kalogirou, Soteris, 1998. "Use of parabolic trough solar energy collectors for sea-water desalination," Applied Energy, Elsevier, vol. 60(2), pages 65-88, June.
    10. Carnevale, Ennio A. & Ferrari, Lorenzo & Paganelli, Simone, 2011. "Investigation on the feasibility of integration of high temperature solar energy in a textile factory," Renewable Energy, Elsevier, vol. 36(12), pages 3517-3529.
    11. Lubitz, William David, 2011. "Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels," Applied Energy, Elsevier, vol. 88(5), pages 1710-1719, May.
    12. Ng, Yi Cheng & Lipiński, Wojciech, 2012. "Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production," Energy, Elsevier, vol. 44(1), pages 720-731.
    13. Reddy, K.S. & Ravi Kumar, K. & Ajay, C.S., 2015. "Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector," Renewable Energy, Elsevier, vol. 77(C), pages 308-319.
    14. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    15. Shakeel, Mohammad Raghib & Mokheimer, Esmail M.A., 2022. "A techno-economic evaluation of utility scale solar power generation," Energy, Elsevier, vol. 261(PA).
    16. Rahimi Telwar, Donya & Khodaei, Jalal & Samimi-Akhijahani, Hadi, 2024. "Thermo-economic evaluation and structural simulation of a parabolic solar collector (PTC) integrated with a desalination system," Energy, Elsevier, vol. 299(C).
    17. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    18. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    19. Kalogirou, Soteris A, 2002. "Parabolic trough collectors for industrial process heat in Cyprus," Energy, Elsevier, vol. 27(9), pages 813-830.
    20. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:815-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.