IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12452-d1218403.html
   My bibliography  Save this article

A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow

Author

Listed:
  • Xi Ye

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Gan Li

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Tong Zhu

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Lei Zhang

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Yanfeng Wang

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

  • Xiang Wang

    (Tsinghua Sichuan Energy Internet Research Institute, Chengdu 610213, China)

  • Hua Zhong

    (State Grid Sichuan Electric Power Company, Chengdu 610041, China)

Abstract

The study of dispatching methods for large-scale interruptible loads and electric vehicle clusters is of great significance as an optional method to alleviate the problem of overload in interface power flow. In this paper, the distribution model and transfer capacity of large-scale interruptible load and electric vehicle in two dimensions of time and space were firstly introduced. Then, a large-scale interruptible load and electric vehicle dispatching model considering transmission interface power flow balance was established. Finally, a case study was carried out with the city power grid as the research object. Studies show that by dispatching large-scale interruptible load and electric vehicle, the overload rate of interface power flow can be reduced by 12–17%, while the proportion of clean energy generation increased by 4.19%. Large-scale interruptible load and electric vehicles are quite different in terms of the role they play in grid regulation. The regulation cost of electric vehicles is higher than that of large-scale interruptible load, but it also has the advantages of promoting the consumption of clean energy and improving the overall operating economy. Which type of resource should be given priority is based on the actual state of the grid. In addition, the cost of electricity has a significant impact on the load response behavior of electric vehicles. It should be determined according to various factors, such as interface power flow control requirements, regulation costs, and power grid operation costs.

Suggested Citation

  • Xi Ye & Gan Li & Tong Zhu & Lei Zhang & Yanfeng Wang & Xiang Wang & Hua Zhong, 2023. "A Dispatching Method for Large-Scale Interruptible Load and Electric Vehicle Clusters to Alleviate Overload of Interface Power Flow," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12452-:d:1218403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco & Aguado, José A., 2023. "An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster," Applied Energy, Elsevier, vol. 333(C).
    2. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Amir Mansouri, Seyed & Jurado, Francisco, 2022. "Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model," Applied Energy, Elsevier, vol. 328(C).
    3. Tian, Man-Wen & Talebizadehsardari, Pouyan, 2021. "Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program," Energy, Elsevier, vol. 215(PB).
    4. Sheeraz Iqbal & Salman Habib & Noor Habib Khan & Muhammad Ali & Muhammad Aurangzeb & Emad M. Ahmed, 2022. "Electric Vehicles Aggregation for Frequency Control of Microgrid under Various Operation Conditions Using an Optimal Coordinated Strategy," Sustainability, MDPI, vol. 14(5), pages 1-25, March.
    5. Tostado-Véliz, Marcos & Jordehi, Ahmad Rezaee & Mansouri, Seyed Amir & Jurado, Francisco, 2023. "A two-stage IGDT-stochastic model for optimal scheduling of energy communities with intelligent parking lots," Energy, Elsevier, vol. 263(PD).
    6. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tostado-Véliz, Marcos & Jin, Xiaolong & Bhakar, Rohit & Jurado, Francisco, 2024. "Coordinated pricing mechanism for parking clusters considering interval-guided uncertainty-aware strategies," Applied Energy, Elsevier, vol. 355(C).
    2. Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
    3. Khaledi, Arian & Saifoddin, Amirali, 2023. "Three-stage resilience-oriented active distribution systems operation after natural disasters," Energy, Elsevier, vol. 282(C).
    4. Asfand Yar Ali & Akhtar Hussain & Ju-Won Baek & Hak-Man Kim, 2020. "Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-20, December.
    5. Xiao, Dongliang & Lin, Zhenjia & Chen, Haoyong & Hua, Weiqi & Yan, Jinyue, 2024. "Windfall profit-aware stochastic scheduling strategy for industrial virtual power plant with integrated risk-seeking/averse preferences," Applied Energy, Elsevier, vol. 357(C).
    6. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    7. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    8. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    9. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Yang, Chengying & Wu, Zhixin & Li, Xuetao & Fars, Ashk, 2024. "Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles," Energy, Elsevier, vol. 288(C).
    11. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    12. Hussain, Shahid & Irshad, Reyazur Rashid & Pallonetto, Fabiano & Hussain, Ihtisham & Hussain, Zakir & Tahir, Muhammad & Abimannan, Satheesh & Shukla, Saurabh & Yousif, Adil & Kim, Yun-Su & El-Sayed, H, 2023. "Hybrid coordination scheme based on fuzzy inference mechanism for residential charging of electric vehicles," Applied Energy, Elsevier, vol. 352(C).
    13. Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
    14. Aqib Shafiq & Sheeraz Iqbal & Salman Habib & Atiq ur Rehman & Anis ur Rehman & Ali Selim & Emad M. Ahmed & Salah Kamel, 2022. "Solar PV-Based Electric Vehicle Charging Station for Security Bikes: A Techno-Economic and Environmental Analysis," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    15. Fotopoulou, Maria & Rakopoulos, Dimitrios & Petridis, Stefanos & Drosatos, Panagiotis, 2024. "Assessment of smart grid operation under emergency situations," Energy, Elsevier, vol. 287(C).
    16. Raheel Muzzammel & Rabia Arshad & Ali Raza & Nebras Sobahi & Umar Alqasemi, 2023. "Two Terminal Instantaneous Power-Based Fault Classification and Location Techniques for Transmission Lines," Sustainability, MDPI, vol. 15(1), pages 1-24, January.
    17. Xianyang Cui & Yulong Liu & Ding Yuan & Tao Jin & Mohamed A. Mohamed, 2023. "A New Five-Port Energy Router Structure and Common Bus Voltage Stabilization Control Strategy," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    18. Zirui Wang & Bowen Zhou & Chen Lv & Hongming Yang & Quan Ma & Zhao Yang & Yong Cui, 2023. "Typical Power Grid Operation Mode Generation Based on Reinforcement Learning and Deep Belief Network," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    19. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Zhou, Yuekuan & Mansouri, Seyed Amir & Jurado, Francisco, 2024. "Best-case-aware planning of photovoltaic-battery systems for multi-mode charging stations," Renewable Energy, Elsevier, vol. 225(C).
    20. Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12452-:d:1218403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.