IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030231.html
   My bibliography  Save this article

Power demand response in the context of smart home application

Author

Listed:
  • Yu, Biying
  • Sun, Feihu
  • Chen, Chen
  • Fu, Guanpeng
  • Hu, Lin

Abstract

Smart home, is expected to bring great changes to people's lifestyles. By shifting the timing of residents' electricity consumption, smart home can improve the flexibility of the power load, and provide significant potential for power demand responses. These responses can substantially mitigate peak-to-valley power demand gaps and household electricity costs. However, the extent of the likely impacts from smart home participating in power demand response remains unknown, and very limited research has been conducted thereon. Therefore, this study attempts to explore the potential changes in peak-to-valley electricity consumption and electricity costs owing to smart home, by developing a multi-objective smart home integrated management model with the consideration of appliances and household electricity consumption behavioral heterogeneity. The survey data collected in China was employed in the empirical analysis. Results show that smart home participating in power demand response can reduce peak load by 29.3%–49.3%, which is up to 149 GW, and the peak-to-valley difference could be decreased by 37.5%–78.2%. However, significant variance exists for the smart home impacts among households with different structures and individual occupations. Teachers, freelancers, and homeworkers contribute more to this reduction. In addition, the peak-to-valley difference after introducing smart home would shrink from -80.7%–-68.5% to -29.2%–-23.9% for areas with the time-of-use price policy, which performs better than the areas without time-of-use price policy. Regarding the economic benefits, smart home participating the demand response could reduce the investments in the power supply and power grid by 1.13–1.19 trillion RMB in China.

Suggested Citation

  • Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030231
    DOI: 10.1016/j.energy.2021.122774
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122774?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    2. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    3. Siano, Pierluigi & Sarno, Debora, 2016. "Assessing the benefits of residential demand response in a real time distribution energy market," Applied Energy, Elsevier, vol. 161(C), pages 533-551.
    4. Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
    5. Yu, Biying & Yang, Xiaojuan & Zhao, Qingyu & Tan, Jinxiao, 2020. "Causal Effect of Time-Use Behavior on Residential Energy Consumption in China," Ecological Economics, Elsevier, vol. 175(C).
    6. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    7. Xiong, Linyun & Li, Penghan & Wang, Ziqiang & Wang, Jie, 2020. "Multi-agent based multi objective renewable energy management for diversified community power consumers," Applied Energy, Elsevier, vol. 259(C).
    8. Tanaka, Makoto, 2006. "Real-time pricing with ramping costs: A new approach to managing a steep change in electricity demand," Energy Policy, Elsevier, vol. 34(18), pages 3634-3643, December.
    9. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    10. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    11. Biying Yu & Yi-Ming Wei & Kei Gomi & Yuzuru Matsuoka, 2018. "Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households," Nature Energy, Nature, vol. 3(2), pages 109-118, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Nan & Waegel, Alex & Hakkarainen, Max & Braham, William W. & Glass, Lior & Aviv, Dorit, 2023. "Blockchain + IoT sensor network to measure, evaluate and incentivize personal environmental accounting and efficient energy use in indoor spaces," Applied Energy, Elsevier, vol. 332(C).
    2. Junpei Nan & Jieran Feng & Xu Deng & Chao Wang & Ke Sun & Hao Zhou, 2022. "Hierarchical Low-Carbon Economic Dispatch with Source-Load Bilateral Carbon-Trading Based on Aumann–Shapley Method," Energies, MDPI, vol. 15(15), pages 1-17, July.
    3. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    4. Shi, Renwei & Jiao, Zaibin, 2023. "Individual household demand response potential evaluation and identification based on machine learning algorithms," Energy, Elsevier, vol. 266(C).
    5. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    6. Ruben Barreto & Calvin Gonçalves & Luis Gomes & Pedro Faria & Zita Vale, 2022. "Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response," Energies, MDPI, vol. 15(7), pages 1-18, March.
    7. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    8. Jieran Feng & Junpei Nan & Chao Wang & Ke Sun & Xu Deng & Hao Zhou, 2022. "Source-Load Coordinated Low-Carbon Economic Dispatch of Electric-Gas Integrated Energy System Based on Carbon Emission Flow Theory," Energies, MDPI, vol. 15(10), pages 1-24, May.
    9. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    10. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    11. Jason Hung, 2022. "Smart Elderly Care Services in China: Challenges, Progress, and Policy Development," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    12. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Brandsma, Jeroen S. & Blasch, Julia E., 2019. "One for all? – The impact of different types of energy feedback and goal setting on individuals’ motivation to conserve electricity," Energy Policy, Elsevier, vol. 135(C).
    3. Parag, Yael, 2021. "Which factors influence large households’ decision to join a time-of-use program? The interplay between demand flexibility, personal benefits and national benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Innocent, Morgane & Francois-Lecompte, Agnes & Roudaut, Nolwenn, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    5. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    6. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    7. Li, Peng & Guo, Tianyu & Abeysekera, Muditha & Wu, Jianzhong & Han, Zhonghe & Wang, Zixuan & Yin, Yunxing & Zhou, Fengquan, 2021. "Intraday multi-objective hierarchical coordinated operation of a multi-energy system," Energy, Elsevier, vol. 228(C).
    8. Boni Sena & Sheikh Ahmad Zaki & Hom Bahadur Rijal & Jorge Alfredo Ardila-Rey & Nelidya Md Yusoff & Fitri Yakub & Mohammad Kholid Ridwan & Firdaus Muhammad-Sukki, 2021. "Determinant Factors of Electricity Consumption for a Malaysian Household Based on a Field Survey," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    9. Matar, Walid, 2018. "Households' response to changes in electricity pricing schemes: Bridging microeconomic and engineering principles," Energy Economics, Elsevier, vol. 75(C), pages 300-308.
    10. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
    11. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    12. Zhu, Penghu & Lin, Boqiang, 2022. "Do the elderly consume more energy? Evidence from the retirement policy in urban China," Energy Policy, Elsevier, vol. 165(C).
    13. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    14. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    15. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    16. Agrawal, Shalu & Harish, S.P. & Mahajan, Aseem & Thomas, Daniel & Urpelainen, Johannes, 2020. "Influence of improved supply on household electricity consumption - Evidence from rural India," Energy, Elsevier, vol. 211(C).
    17. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "A review of residential demand response of smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 166-178.
    18. Calvin Nsangou, Jean & Kenfack, Joseph & Nzotcha, Urbain & Tamo, Thomas Tatietse, 2020. "Assessment of the potential for electricity savings in households in Cameroon: A stochastic frontier approach," Energy, Elsevier, vol. 211(C).
    19. Sol Kim & Sungwon Jung & Seung-Man Baek, 2019. "A Model for Predicting Energy Usage Pattern Types with Energy Consumption Information According to the Behaviors of Single-Person Households in South Korea," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    20. Wang, Weijun & Han, Yicen & Wang, Meng & He, Yan, 2023. "Research on fair residential critical peak price: Based on a price penalty mechanism for high-electricity consumers," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.