IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009406.html
   My bibliography  Save this article

Social impact of decarbonization objectives through smart homes: Survey and analysis

Author

Listed:
  • Lazaroiu, Alexandra Catalina
  • Roscia, Mariacristina
  • Dancu, Vasile Sebastian
  • Balaban, Georgiana

Abstract

The technological development and economic growth of renewable energy are the key solution for almost full decarbonization of the energy systems. The sustainability and energy efficiency, artificial intelligence and connectivity will be the determining elements towards reaching this ambitious goal. Household appliances and tools for controlling energy consumption, temperature, lighting, etc. In the smart home will play a key role to increase awareness of families' energy consumption. IoT (Internet of Things) devices for the smart home allow us to monitor consumption and pay attention to efficiently energy use. However, savings are not the only important element of the smart home. Together with the digital control of the home these are elements that include a fundamental dimension: decarbonization, which is the cornerstone of the energy transition, which must involve an epochal change of mentality to our society where digitalization and people's well-being meet. The paper deals with social analysis of large cities population perception on integrating renewable energy sources and necessary devices to transform existing houses in smart homes towards economic wellbeing and decarbonization of the energy sector. Different classes of respondents were interviewed – owned and rented fome, rural and urban inhabitants, different segments of age, various number of inhabitants in urban areas and the capital, women and men, high-income and low-income, different levels of education – to support or disregard smart home technological development and reveal the different perception towards further usage of smart devices for daily benefits.

Suggested Citation

  • Lazaroiu, Alexandra Catalina & Roscia, Mariacristina & Dancu, Vasile Sebastian & Balaban, Georgiana, 2024. "Social impact of decarbonization objectives through smart homes: Survey and analysis," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009406
    DOI: 10.1016/j.renene.2024.120872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhen & Niu, Shuwen & Halleck Vega, Sol Maria & Wang, Jinnian & Wang, Dakang & Yang, Xiankun, 2024. "Electrification and residential well-being in China," Energy, Elsevier, vol. 294(C).
    2. Li, Hui & Li, Yue & Zheng, Guoliang & Zhou, You, 2024. "Interaction between household energy consumption and health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).
    4. Sima, Catalina Alexandra & Roscia, Mariacristina & Dancu, Vasile Sebastian, 2022. "Social behavior analysis for improving the positive energy transition," Renewable Energy, Elsevier, vol. 196(C), pages 1325-1344.
    5. Tostado-Véliz, Marcos & Icaza-Alvarez, Daniel & Jurado, Francisco, 2021. "A novel methodology for optimal sizing photovoltaic-battery systems in smart homes considering grid outages and demand response," Renewable Energy, Elsevier, vol. 170(C), pages 884-896.
    6. Chen, Xiaoling & Miller, Cory & Goutham, Mithun & Hanumalagutti, Prasad Dev & Blaser, Rachel & Stockar, Stephanie, 2024. "Development and evaluation of an online home energy management strategy for load coordination in smart homes with renewable energy sources," Energy, Elsevier, vol. 290(C).
    7. Ferreira, Laura & Oliveira, Tiago & Neves, Catarina, 2023. "Consumer's intention to use and recommend smart home technologies: The role of environmental awareness," Energy, Elsevier, vol. 263(PC).
    8. Ryu, Do-Hyeon & Kim, Kwang-Jae, 2024. "The influence of information privacy concerns and perceived electricity usage habits on the usage intention of advanced metering infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Sovacool, Benjamin K. & Martiskainen, Mari & Furszyfer Del Rio, Dylan D., 2021. "Knowledge, energy sustainability, and vulnerability in the demographics of smart home technology diffusion," Energy Policy, Elsevier, vol. 153(C).
    10. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    11. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.
    12. Ma, Jinjin & Yang, Lin & Wang, Donghan & Li, Yiming & Xie, Zuomiao & Lv, Haodong & Woo, Donghyup, 2024. "Digitalization in response to carbon neutrality: Mechanisms, effects and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Han, Yawen & Du, Xin & Zhang, Hengming & Ni, Jinfeng & Fan, Fengyan, 2024. "Does smart home adoption reduce household electricity-related CO2 emissions? ——Evidence from Hangzhou city, China," Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shenghua & Li, Yan & Liu, Dawei & Luo, Xuhui & Sun, Yitan, 2024. "Low-carbon development of urban power grids in China: Quality assessment, obstacle analysis, and potential release," Energy, Elsevier, vol. 304(C).
    2. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    3. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    4. Elma, Onur & Selamogullari, Ugur Savas, 2015. "A new home energy management algorithm with voltage control in a smart home environment," Energy, Elsevier, vol. 91(C), pages 720-731.
    5. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    6. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    7. Wilson, Charlie & Hargreaves, Tom & Hauxwell-Baldwin, Richard, 2017. "Benefits and risks of smart home technologies," Energy Policy, Elsevier, vol. 103(C), pages 72-83.
    8. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    9. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    10. Nilashi, Mehrbakhsh & Abumalloh, Rabab Ali & Samad, Sarminah & Alrizq, Mesfer & Alyami, Sultan & Abosaq, Hamad & Alghamdi, Abdullah & Akib, Noor Adelyna Mohammed, 2022. "Factors impacting customer purchase intention of smart home security systems: Social data analysis using machine learning techniques," Technology in Society, Elsevier, vol. 71(C).
    11. Rafik Nafkha & Tomasz Ząbkowski & Krzysztof Gajowniczek, 2021. "Deep Learning-Based Approaches to Optimize the Electricity Contract Capacity Problem for Commercial Customers," Energies, MDPI, vol. 14(8), pages 1-17, April.
    12. Mohammad Shakeri & Nowshad Amin & Jagadeesh Pasupuleti & Abolfazl Mehbodniya & Nilofar Asim & Sieh Kiong Tiong & Foo Wah Low & Chong Tak Yaw & Nurul Asma Samsudin & Md Rokonuzzaman & Chong Kok Hen & C, 2020. "An Autonomous Home Energy Management System Using Dynamic Priority Strategy in Conventional Homes," Energies, MDPI, vol. 13(13), pages 1-14, June.
    13. Gholami, M. & Sanjari, M.J., 2021. "Multiobjective energy management in battery-integrated home energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 967-975.
    14. Tang, Yanyan & Zhang, Qi & Liu, Boyu & Li, Yan & Ni, Ruiyan & Wang, Yi, 2023. "What influences residents’ intention to participate in the electric vehicle battery recycling? Evidence from China," Energy, Elsevier, vol. 276(C).
    15. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    16. Li, Xue & Shao, Junyan & Jiang, Tao & Chen, Houhe & Zhou, Yue & Zhang, Rufeng & Jia, Hongjie & Wu, Jianzhong, 2024. "A hierarchical test benchmark of integrated energy system in Northeast China," Applied Energy, Elsevier, vol. 374(C).
    17. Amjad Almusaed & Ibrahim Yitmen & Asaad Almssad, 2023. "Enhancing Smart Home Design with AI Models: A Case Study of Living Spaces Implementation Review," Energies, MDPI, vol. 16(6), pages 1-23, March.
    18. Yahya Algül & Deniz Erenel, 2024. "The Impact of R&D Expenditures on Regional Energy Intensity in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 546-557, September.
    19. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.
    20. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.