IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311235.html
   My bibliography  Save this article

Profit assessment of home energy management system for buildings with A-G energy labels

Author

Listed:
  • Yousefi, Mojtaba
  • Hajizadeh, Amin
  • Soltani, Mohsen N.
  • Hredzak, Branislav
  • Kianpoor, Nasrin

Abstract

There are various studies related to the advantages of implementing home energy management system (HEMS) for residential buildings to minimize the cost of energy consumption and improve user’s comfort level. However, there is still a lack of comprehensive study to evaluate benefits of utilizing HEMS technologies in various residential buildings with different insulation quality (highly or poorly insulated buildings, which can be determined by energy labels). Therefore, in this paper, a concise yet comprehensive comparative analysis is conducted to investigate the operating profits of using HEMS technologies in residential buildings with different energy labels. Moreover, this comparative analysis is performed with two different heat emission systems: radiator only system and a combination of floor–radiator system. The HEMS performance results are presented and compared for both the heating systems in terms of minimizing the cost of energy and the user’s comfort. Also, the results for each building are compared with a baseline case (without HEMS technology) for both heating systems to prove the HEMS performance effectiveness. The simulation results demonstrate that the HEMS operating profits increase as the building insulation quality rises. For example, the HEMS can minimize the cost of energy by 41% in a building with label “A” (highly insulated building), while in a building with label “G”, the energy cost minimization is 26% under the same conditions. Finally, it is proved that the HEMS is more effective with floor-radiator combination heat emission system rather than the radiator only system.

Suggested Citation

  • Yousefi, Mojtaba & Hajizadeh, Amin & Soltani, Mohsen N. & Hredzak, Branislav & Kianpoor, Nasrin, 2020. "Profit assessment of home energy management system for buildings with A-G energy labels," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311235
    DOI: 10.1016/j.apenergy.2020.115618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    2. Ebrahimi-Moghadam, Amir & Ildarabadi, Paria & Aliakbari, Karim & Fadaee, Faramarz, 2020. "Sensitivity analysis and multi-objective optimization of energy consumption and thermal comfort by using interior light shelves in residential buildings," Renewable Energy, Elsevier, vol. 159(C), pages 736-755.
    3. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    4. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2024. "Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources," Applied Energy, Elsevier, vol. 364(C).
    2. Alizadeh Bidgoli, Mohsen & Ahmadian, Ali, 2022. "Multi-stage optimal scheduling of multi-microgrids using deep-learning artificial neural network and cooperative game approach," Energy, Elsevier, vol. 239(PB).
    3. Ouyang, Tiancheng & Zhang, Mingliang & Wu, Wencong & Zhao, Jiaqi & Xu, Hua, 2023. "A day-ahead planning for multi-energy system in building community," Energy, Elsevier, vol. 267(C).
    4. Zhang, Heng & Zhang, Shenxi & Hu, Xiao & Cheng, Haozhong & Gu, Qingfa & Du, Mengke, 2022. "Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion," Applied Energy, Elsevier, vol. 306(PB).
    5. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    6. Munankarmi, Prateek & Maguire, Jeff & Balamurugan, Sivasathya Pradha & Blonsky, Michael & Roberts, David & Jin, Xin, 2021. "Community-scale interaction of energy efficiency and demand flexibility in residential buildings," Applied Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    3. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    5. Adnan Ahmad & Asif Khan & Nadeem Javaid & Hafiz Majid Hussain & Wadood Abdul & Ahmad Almogren & Atif Alamri & Iftikhar Azim Niaz, 2017. "An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources," Energies, MDPI, vol. 10(4), pages 1-35, April.
    6. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    7. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    8. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    9. Jie Sun & Jiao Wang & Yonghui Sun & Mingxin Xu & Yong Shi & Zifa Liu & Xingya Wen, 2021. "Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM," Energies, MDPI, vol. 14(15), pages 1-13, July.
    10. Liu, Aaron & Miller, Wendy & Cholette, Michael E. & Ledwich, Gerard & Crompton, Glenn & Li, Yong, 2021. "A multi-dimension clustering-based method for renewable energy investment planning," Renewable Energy, Elsevier, vol. 172(C), pages 651-666.
    11. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    12. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
    13. Khan, Ahsan Raza & Mahmood, Anzar & Safdar, Awais & Khan, Zafar A. & Khan, Naveed Ahmed, 2016. "Load forecasting, dynamic pricing and DSM in smart grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1311-1322.
    14. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    15. Al Essa, Mohammed Jasim M., 2019. "Home energy management of thermostatically controlled loads and photovoltaic-battery systems," Energy, Elsevier, vol. 176(C), pages 742-752.
    16. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Rocco, Vittorio & Rossi, Joao Luis, 2018. "Renewable source penetration and microgrids: Effects of MILP – Based control strategies," Energy, Elsevier, vol. 152(C), pages 416-426.
    17. Yuan Fang & Soolyeon Cho & Yanyu Wang & Luya He, 2023. "Sensitivity Analysis and Multi-Objective Optimization of Skylight Design in the Early Design Stage," Energies, MDPI, vol. 17(1), pages 1-18, December.
    18. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    19. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
    20. Nadia Ahmed & Marco Levorato & Roberto Valentini & Guann-Pyng Li, 2020. "Data Driven Optimization of Energy Management in Residential Buildings with Energy Harvesting and Storage," Energies, MDPI, vol. 13(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.