IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v128y2022icp193-208.html
   My bibliography  Save this article

Framework for planning of EV charging infrastructure: Where should cities start?

Author

Listed:
  • Torkey, Alaa
  • Abdelgawad, Hossam

Abstract

The research community has been extensively contributing to micro-level planning of Electric Vehicle Charging Infrastructure (EVCI); employing objective-oriented optimization techniques for the optimum location of EVCI and their capacity. However, the complexity of those techniques and their unfamiliarity for local authorities makes micro-level planning, not a practical option for cities to start EVCI planning. This research contributes to meso-level planning of EVCI by implementing the praiseworthy practices in 25 Mega EV cities along with cities characteristics in creating a dynamic framework for EVCI planning. The proposed framework is divided into a government-target-driven framework for cities with explicit targets for e-mobility, and international-best-practices-driven framework for early adopters cities. The employed planning tools are applicable for design approaches and serviceability assessment by quantifying EV served demand and the distribution of EVCI locations as demand-driven networks. The outputs of the proposed framework are: EVCI potential locations, type, capacity, and served EV demand. Policy and operational recommendations including: projected market categories of consumers, targeted degree of electrification, and proposed demand-responsive programs are discussed. The international-best-practices-driven framework is demonstrated in the New Administrative Capital of Egypt and a phased plan of EVCI from (2022–2027) is developed to provide multiple design alternatives for decision-makers.

Suggested Citation

  • Torkey, Alaa & Abdelgawad, Hossam, 2022. "Framework for planning of EV charging infrastructure: Where should cities start?," Transport Policy, Elsevier, vol. 128(C), pages 193-208.
  • Handle: RePEc:eee:trapol:v:128:y:2022:i:c:p:193-208
    DOI: 10.1016/j.tranpol.2022.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X22002578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2018. "Exploring the interactive effects of ambient temperature and vehicle auxiliary loads on electric vehicle energy consumption," Applied Energy, Elsevier, vol. 227(C), pages 324-331.
    2. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    3. Li, Pengshun & Zhang, Yi & Zhang, Yi & Zhang, Kai & Jiang, Mengyan, 2021. "The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus," Energy, Elsevier, vol. 218(C).
    4. Sanchari Deb & Kari Tammi & Karuna Kalita & Pinakeswar Mahanta, 2018. "Review of recent trends in charging infrastructure planning for electric vehicles," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    5. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    6. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2021. "Driving behaviour and trip condition effects on the energy consumption of an electric vehicle under real-world driving," Applied Energy, Elsevier, vol. 297(C).
    7. Mostafa Mahdy & AbuBakr S. Bahaj & Philip Turner & Naomi Wise & Abdulsalam S. Alghamdi & Hidab Hamwi, 2022. "Multi Criteria Decision Analysis to Optimise Siting of Electric Vehicle Charging Points—Case Study Winchester District, UK," Energies, MDPI, vol. 15(7), pages 1-16, March.
    8. World Bank & International Association of Public Transport, 2018. "Electric Mobility and Development," World Bank Publications - Reports 30922, The World Bank Group.
    9. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    10. Sun, Zhuo & Gao, Wei & Li, Bin & Wang, Longlong, 2020. "Locating charging stations for electric vehicles," Transport Policy, Elsevier, vol. 98(C), pages 48-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Junyu & Yu, Yuanbin & Min, Haitao & Cao, Qiming & Sun, Weiyi & Zhang, Zhaopu & Luo, Chunqi, 2023. "Trip-level energy consumption prediction model for electric bus combining Markov-based speed profile generation and Gaussian processing regression," Energy, Elsevier, vol. 263(PD).
    2. Andrea Di Martino & Seyed Mahdi Miraftabzadeh & Michela Longo, 2022. "Strategies for the Modelisation of Electric Vehicle Energy Consumption: A Review," Energies, MDPI, vol. 15(21), pages 1-20, October.
    3. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    4. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    5. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    6. Irfan Ullah & Muhammad Safdar & Jianfeng Zheng & Alessandro Severino & Arshad Jamal, 2023. "Employing Bibliometric Analysis to Identify the Current State of the Art and Future Prospects of Electric Vehicles," Energies, MDPI, vol. 16(5), pages 1-24, February.
    7. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    8. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    9. Sun, Xilei & Fu, Jianqin, 2024. "Experiment investigation for interconnected effects of driving cycle and ambient temperature on bidirectional energy flows in an electric sport utility vehicle," Energy, Elsevier, vol. 300(C).
    10. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    11. Li, Pengshun & Zhang, Yuhang & Zhang, Yi & Zhang, Yi & Zhang, Kai, 2021. "Prediction of electric bus energy consumption with stochastic speed profile generation modelling and data driven method based on real-world big data," Applied Energy, Elsevier, vol. 298(C).
    12. David Watling & Patrícia Baptista & Gonçalo Duarte & Jianbing Gao & Haibo Chen, 2022. "Systematic Method for Developing Reference Driving Cycles Appropriate to Electric L-Category Vehicles," Energies, MDPI, vol. 15(9), pages 1-28, May.
    13. Hidab Hamwi & Tom Rushby & Mostafa Mahdy & AbuBakr S. Bahaj, 2022. "Effects of High Ambient Temperature on Electric Vehicle Efficiency and Range: Case Study of Kuwait," Energies, MDPI, vol. 15(9), pages 1-12, April.
    14. Zhang, Jian & Tang, Tie-Qiao & Yan, Yadan & Qu, Xiaobo, 2021. "Eco-driving control for connected and automated electric vehicles at signalized intersections with wireless charging," Applied Energy, Elsevier, vol. 282(PA).
    15. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    16. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    17. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    18. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    19. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    20. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:128:y:2022:i:c:p:193-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.