IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp319-326.html
   My bibliography  Save this article

Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems

Author

Listed:
  • Su, Yan
  • Chan, Lai-Cheong
  • Shu, Lianjie
  • Tsui, Kwok-Leung

Abstract

This paper develops new real time prediction models for output power and energy efficiency of solar photovoltaic (PV) systems. These models were validated using measured data of a grid-connected solar PV system in Macau. Both time frames based on yearly average and monthly average are considered. It is shown that the prediction model for the yearly/monthly average of the minutely output power fits the measured data very well with high value of R2. The online prediction model for system efficiency is based on the ratio of the predicted output power to the predicted solar irradiance. This ratio model is shown to be able to fit the intermediate phase (9am to 4pm) very well but not accurate for the growth and decay phases where the system efficiency is near zero. However, it can still serve as a useful purpose for practitioners as most PV systems work in the most efficient manner over this period. It is shown that the maximum monthly average minutely efficiency varies over a small range of 10.81% to 12.63% in different months with slightly higher efficiency in winter months.

Suggested Citation

  • Su, Yan & Chan, Lai-Cheong & Shu, Lianjie & Tsui, Kwok-Leung, 2012. "Real-time prediction models for output power and efficiency of grid-connected solar photovoltaic systems," Applied Energy, Elsevier, vol. 93(C), pages 319-326.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:319-326
    DOI: 10.1016/j.apenergy.2011.12.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911008488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
    2. Cucumo, Mario & Rosa, Alessandro De & Ferraro, Vittorio & Kaliakatsos, Dimitrios & Marinelli, Valerio, 2006. "Performance analysis of a 3kW grid-connected photovoltaic plant," Renewable Energy, Elsevier, vol. 31(8), pages 1129-1138.
    3. Imtiaz Ashraf & A. Chandra, 2004. "Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 21(1/2), pages 119-130.
    4. Joyce, A. & Rodrigues, C. & Manso, R., 2001. "Modelling a PV system," Renewable Energy, Elsevier, vol. 22(1), pages 275-280.
    5. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    6. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    7. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    8. Al-Ismaily, Hilal A. & Probert, Douglas, 1998. "Photovoltaic electricity prospects in oman," Applied Energy, Elsevier, vol. 59(2-3), pages 97-124, February.
    9. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    10. Chow, T. T. & Chan, A. L. S., 2004. "Numerical study of desirable solar-collector orientations for the coastal region of South China," Applied Energy, Elsevier, vol. 79(3), pages 249-260, November.
    11. Mellit, A. & Kalogirou, S.A. & Shaari, S. & Salhi, H. & Hadj Arab, A., 2008. "Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system," Renewable Energy, Elsevier, vol. 33(7), pages 1570-1590.
    12. So, Jung Hun & Jung, Young Seok & Yu, Gwon Jong & Choi, Ju Yeop & Choi, Jae Ho, 2007. "Performance results and analysis of 3kW grid-connected PV systems," Renewable Energy, Elsevier, vol. 32(11), pages 1858-1872.
    13. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2007. "A novel model for photovoltaic array performance prediction," Applied Energy, Elsevier, vol. 84(12), pages 1187-1198, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Byung O & Tam, Kwa-Sur, 2015. "New and improved methods to estimate day-ahead quantity and quality of solar irradiance," Applied Energy, Elsevier, vol. 137(C), pages 240-249.
    2. Obara, Shin’ya & Konno, Daisuke & Utsugi, Yuta & Morel, Jorge, 2014. "Analysis of output power and capacity reduction in electrical storage facilities by peak shift control of PV system with bifacial modules," Applied Energy, Elsevier, vol. 128(C), pages 35-48.
    3. Jiale Tang & Kuixing Liu & Weijie You & Xinyu Zhang & Tuomi Zhang, 2023. "Research on Online Temperature Prediction Method for Office Building Interiors Based on Data Mining," Energies, MDPI, vol. 16(14), pages 1-19, July.
    4. Barukčić, M. & Hederić, Ž. & Hadžiselimović, M. & Seme, S., 2018. "A simple stochastic method for modelling the uncertainty of photovoltaic power production based on measured data," Energy, Elsevier, vol. 165(PB), pages 246-256.
    5. Su, Yan & Sui, Pengxiang & Davidson, Jane H., 2022. "A sub-continuous lattice Boltzmann simulation for nanofluid cooling of concentrated photovoltaic thermal receivers," Renewable Energy, Elsevier, vol. 184(C), pages 712-726.
    6. Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
    7. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    8. Alonso-Montesinos, J. & Batlles, F.J., 2015. "The use of a sky camera for solar radiation estimation based on digital image processing," Energy, Elsevier, vol. 90(P1), pages 377-386.
    9. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    10. Li, Yanting & He, Yong & Su, Yan & Shu, Lianjie, 2016. "Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines," Applied Energy, Elsevier, vol. 180(C), pages 392-401.
    11. Boumediene Ladjal & Imad Eddine Tibermacine & Mohcene Bechouat & Moussa Sedraoui & Christian Napoli & Abdelaziz Rabehi & Djemoui Lalmi, 2024. "Hybrid models for direct normal irradiance forecasting: a case study of Ghardaia zone (Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14703-14725, December.
    12. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    13. Pang, Zhihong & Niu, Fuxin & O’Neill, Zheng, 2020. "Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons," Renewable Energy, Elsevier, vol. 156(C), pages 279-289.
    14. Yonghui Li & Qiuwei Wu & Haiyu Zhu, 2015. "Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation," Energies, MDPI, vol. 8(3), pages 1-21, March.
    15. Siwei Lou & Wenqiang Chen & Danny H.W. Li & Mo Wang & Hainan Chen & Isaac Y.F. Lun & Dawei Xia, 2019. "Tilted Photovoltaic Energy Outputs in Outdoor Environments," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    16. Shravanth Vasisht, M. & Vashista, G.A. & Srinivasan, J. & Ramasesha, Sheela K., 2017. "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, Elsevier, vol. 118(C), pages 684-691.
    17. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    18. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.
    19. Gulin, Marko & Vašak, Mario & Perić, Nedjeljko, 2013. "Dynamical optimal positioning of a photovoltaic panel in all weather conditions," Applied Energy, Elsevier, vol. 108(C), pages 429-438.
    20. Christil Pasion & Torrey Wagner & Clay Koschnick & Steven Schuldt & Jada Williams & Kevin Hallinan, 2020. "Machine Learning Modeling of Horizontal Photovoltaics Using Weather and Location Data," Energies, MDPI, vol. 13(10), pages 1-14, May.
    21. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    22. Moslehi, Salim & Reddy, T. Agami & Katipamula, Srinivas, 2018. "Evaluation of data-driven models for predicting solar photovoltaics power output," Energy, Elsevier, vol. 142(C), pages 1057-1065.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabo, Mahmoud Lurwan & Mariun, Norman & Hizam, Hashim & Mohd Radzi, Mohd Amran & Zakaria, Azmi, 2017. "Spatial matching of large-scale grid-connected photovoltaic power generation with utility demand in Peninsular Malaysia," Applied Energy, Elsevier, vol. 191(C), pages 663-688.
    2. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    3. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    4. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Gulkowski, Slawomir & Muñoz Diez, José Vicente & Aguilera Tejero, Jorge & Nofuentes, Gustavo, 2019. "Computational modeling and experimental analysis of heterojunction with intrinsic thin-layer photovoltaic module under different environmental conditions," Energy, Elsevier, vol. 172(C), pages 380-390.
    7. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    8. Silvestre, S. & Boronat, A. & Chouder, A., 2009. "Study of bypass diodes configuration on PV modules," Applied Energy, Elsevier, vol. 86(9), pages 1632-1640, September.
    9. Himri, Y. & Malik, Arif S. & Boudghene Stambouli, A. & Himri, S. & Draoui, B., 2009. "Review and use of the Algerian renewable energy for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1584-1591, August.
    10. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    11. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    12. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    13. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    14. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    15. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    16. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    17. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Tarmahi, Hakimeh & Gholampour, Maysam, 2016. "Technical and economic assessments of grid-connected photovoltaic power plants: Iran case study," Energy, Elsevier, vol. 114(C), pages 923-934.
    18. de la Parra, I. & Muñoz, M. & Lorenzo, E. & García, M. & Marcos, J. & Martínez-Moreno, F., 2017. "PV performance modelling: A review in the light of quality assurance for large PV plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 780-797.
    19. Alagoz, B.B. & Kaygusuz, A. & Karabiber, A., 2012. "A user-mode distributed energy management architecture for smart grid applications," Energy, Elsevier, vol. 44(1), pages 167-177.
    20. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:319-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.