IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32483-x.html
   My bibliography  Save this article

Deep learning for twelve hour precipitation forecasts

Author

Listed:
  • Lasse Espeholt

    (Google Research, Google Inc)

  • Shreya Agrawal

    (Google Research, Google Inc)

  • Casper Sønderby

    (Google Research, Google Inc)

  • Manoj Kumar

    (Google Research, Google Inc)

  • Jonathan Heek

    (Google Research, Google Inc)

  • Carla Bromberg

    (Google Research, Google Inc)

  • Cenk Gazen

    (Google Research, Google Inc)

  • Rob Carver

    (Google Research, Google Inc)

  • Marcin Andrychowicz

    (Google Research, Google Inc)

  • Jason Hickey

    (Google Research, Google Inc)

  • Aaron Bell

    (Google Research, Google Inc)

  • Nal Kalchbrenner

    (Google Research, Google Inc)

Abstract

Existing weather forecasting models are based on physics and use supercomputers to evolve the atmosphere into the future. Better physics-based forecasts require improved atmospheric models, which can be difficult to discover and develop, or increasing the resolution underlying the simulation, which can be computationally prohibitive. An emerging class of weather models based on neural networks overcome these limitations by learning the required transformations from data instead of relying on hand-coded physics and by running efficiently in parallel. Here we present a neural network capable of predicting precipitation at a high resolution up to 12 h ahead. The model predicts raw precipitation targets and outperforms for up to 12 h of lead time state-of-the-art physics-based models currently operating in the Continental United States. The results represent a substantial step towards validating the new class of neural weather models.

Suggested Citation

  • Lasse Espeholt & Shreya Agrawal & Casper Sønderby & Manoj Kumar & Jonathan Heek & Carla Bromberg & Cenk Gazen & Rob Carver & Marcin Andrychowicz & Jason Hickey & Aaron Bell & Nal Kalchbrenner, 2022. "Deep learning for twelve hour precipitation forecasts," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32483-x
    DOI: 10.1038/s41467-022-32483-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32483-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32483-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    2. Liu, Jiarui & Fu, Yuchen, 2023. "Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linsenmeier, Manuel & Shrader, Jeffrey G., 2023. "Global inequalities in weather forecasts," SocArXiv 7e2jf, Center for Open Science.
    2. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    3. Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
    4. Anand, Vaibhav, 2022. "The Value of Forecast Improvements: Evidence from Advisory Lead Times and Vehicle Crashes," MPRA Paper 114491, University Library of Munich, Germany.
    5. Chuyuan Lin & Ying Yu & Lucas Y. Wu & Jiguo Cao, 2023. "Unsupervised learning on U.S. weather forecast performance," Computational Statistics, Springer, vol. 38(3), pages 1193-1213, September.
    6. Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    8. Husain Najafi & Pallav Kumar Shrestha & Oldrich Rakovec & Heiko Apel & Sergiy Vorogushyn & Rohini Kumar & Stephan Thober & Bruno Merz & Luis Samaniego, 2024. "High-resolution impact-based early warning system for riverine flooding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    10. Tang, Wenliang & Yang, Mian & Duan, Hongbo, 2023. "Temperature and corporate tax avoidance: Evidence from Chinese manufacturing firms," Energy Economics, Elsevier, vol. 117(C).
    11. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    12. Zack Guido & Sara Lopus & Kurt Waldman & Corrie Hannah & Andrew Zimmer & Natasha Krell & Chris Knudson & Lyndon Estes & Kelly Caylor & Tom Evans, 2021. "Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making," Climatic Change, Springer, vol. 168(1), pages 1-20, September.
    13. Sergei Soldatenko & Rafael Yusupov, 2021. "An Optimal Control Perspective on Weather and Climate Modification," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    14. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    15. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    16. Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
    17. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    18. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    19. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks," Mathematics, MDPI, vol. 12(3), pages 1-17, February.
    20. Karma Tsering & Manish Shrestha & Kiran Shakya & Birendra Bajracharya & Mir Matin & Jorge Luis Sanchez Lozano & Jim Nelson & Tandin Wangchuk & Binod Parajuli & Md Arifuzzaman Bhuyan, 2022. "Verification of two hydrological models for real-time flood forecasting in the Hindu Kush Himalaya (HKH) region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1821-1845, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32483-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.