IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5733-d633681.html
   My bibliography  Save this article

Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints

Author

Listed:
  • Radhanon Diewvilai

    (Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand)

  • Kulyos Audomvongseree

    (Department of Electrical Engineering, Chulalongkorn University, Bangkok 10330, Thailand
    Energy Research Institute, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

This paper proposes a methodology to develop generation expansion plans considering energy storage systems (ESSs), individual generation unit characteristics, and full-year hourly power balance constraints. Generation expansion planning (GEP) is a complex optimization problem. To get a realistic plan with the lowest cost, acceptable system reliability, and satisfactory CO 2 emissions for the coming decades, a complex multi-period mixed integer linear programming (MILP) model needs to be formulated and solved with individual unit characteristics along with hourly power balance constraints. This problem requires huge computational effort since there are thousands of possible scenarios with millions of variables in a single calculation. However, in this paper, instead of finding the globally optimal solutions of such MILPs directly, a simplification process is proposed, breaking it down into multiple LP subproblems, which are easier to solve. In each subproblem, constraints relating to renewable energy generation profiles, charge-discharge patterns of ESSs, and system reliability can be included. The proposed process is tested against Thailand’s power development plan. The obtained solution is almost identical to that of the actual plan, but with less computational effort. The impacts of uncertainties as well as ESSs on GEP, e.g., system reliability, electricity cost, and CO 2 emission, are also discussed.

Suggested Citation

  • Radhanon Diewvilai & Kulyos Audomvongseree, 2021. "Generation Expansion Planning with Energy Storage Systems Considering Renewable Energy Generation Profiles and Full-Year Hourly Power Balance Constraints," Energies, MDPI, vol. 14(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5733-:d:633681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gacitua, L. & Gallegos, P. & Henriquez-Auba, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D. & Valenzuela, A. & Wenzel, G., 2018. "A comprehensive review on expansion planning: Models and tools for energy policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 346-360.
    2. P. Massé & R. Gibrat, 1957. "Application of Linear Programming to Investments in the Electric Power Industry," Management Science, INFORMS, vol. 3(2), pages 149-166, January.
    3. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    4. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    5. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    6. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & He, Gang & Zheng, Yanan, 2017. "An integrated source-grid-load planning model at the macro level: Case study for China's power sector," Energy, Elsevier, vol. 126(C), pages 231-246.
    7. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
    8. Hemmati, Reza & Saboori, Hedayat & Jirdehi, Mehdi Ahmadi, 2016. "Multistage generation expansion planning incorporating large scale energy storage systems and environmental pollution," Renewable Energy, Elsevier, vol. 97(C), pages 636-645.
    9. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    10. Hemmati, Reza & Saboori, Hedayat & Siano, Pierluigi, 2017. "Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems," Energy, Elsevier, vol. 134(C), pages 699-708.
    11. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    12. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    13. Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
    14. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2016. "An optimization framework for the integrated planning of generation and transmission expansion in interconnected power systems," Applied Energy, Elsevier, vol. 170(C), pages 1-21.
    15. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
    16. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomonobu Senjyu & Mahdi Khosravy, 2022. "Power System Planning and Quality Control," Energies, MDPI, vol. 15(14), pages 1-2, July.
    2. Seyed Hamed Jalalzad Mahvizani & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    3. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    4. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Possible Pathways toward Carbon Neutrality in Thailand’s Electricity Sector by 2050 through the Introduction of H 2 Blending in Natural Gas and Solar PV with BESS," Energies, MDPI, vol. 15(11), pages 1-26, May.
    5. Majid Dehghani & Mohammad Taghipour & Saleh Sadeghi Gougheri & Amirhossein Nikoofard & Gevork B. Gharehpetian & Mahdi Khosravy, 2021. "A Deep Learning-Based Approach for Generation Expansion Planning Considering Power Plants Lifetime," Energies, MDPI, vol. 14(23), pages 1-21, December.
    6. Siripha Junlakarn & Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Stochastic Modeling of Renewable Energy Sources for Capacity Credit Evaluation," Energies, MDPI, vol. 15(14), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    2. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    3. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    4. Fitiwi, Desta & Lynch, Muireann Á. & Bertsch, Valentin, 2019. "Optimal development of electricity generation mix considering fossil fuel phase-out and strategic multi-area interconnection," Papers WP616, Economic and Social Research Institute (ESRI).
    5. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    6. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    7. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    8. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Enhanced network effects and stochastic modelling in generation expansion planning: Insights from an insular power system," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    9. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    10. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Scott, Ian J. & Botterud, Audun & Carvalho, Pedro M.S. & Silva, Carlos A. Santos, 2020. "Renewable energy support policy evaluation: The role of long-term uncertainty in market modelling," Applied Energy, Elsevier, vol. 278(C).
    12. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    13. Quiroga, Daniela & Sauma, Enzo & Pozo, David, 2019. "Power system expansion planning under global and local emission mitigation policies," Applied Energy, Elsevier, vol. 239(C), pages 1250-1264.
    14. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    15. Wang, B. & Liu, L. & Huang, G.H. & Li, W. & Xie, Y.L., 2018. "Effects of carbon and environmental tax on power mix planning - A case study of Hebei Province, China," Energy, Elsevier, vol. 143(C), pages 645-657.
    16. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    17. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    18. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    19. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    20. Li, Can & Conejo, Antonio J. & Liu, Peng & Omell, Benjamin P. & Siirola, John D. & Grossmann, Ignacio E., 2022. "Mixed-integer linear programming models and algorithms for generation and transmission expansion planning of power systems," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1071-1082.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5733-:d:633681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.