IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922005682.html
   My bibliography  Save this article

The short-term optimal resource allocation approach for electric vehicles and V2G service stations

Author

Listed:
  • Xu, Jie
  • Huang, Yuping

Abstract

As more electric vehicles (EVs) participate in vehicle-to-grid (V2G) service, the large-scale EV-pile resource allocation problem is becoming a key issue that affects system operation and user participation. EV user preference and decision-making uncertainty can affect V2G scheduling, potentially causing an imbalance between the dispatchable capacities of aggregated EVs and the power required in service stations. To improve the utilization rates of EV batteries and charging/discharging piles, this study proposes a vehicle-pile resource allocation approach based on a two-stage categorical hierarchical scheduling framework to solve the vehicle-pile assignment problem in near real time. It also develops a new hybrid clustering algorithm and a vehicle-pile resource assignment model that considers user preferences and requirements in the upper layer, and operational cost reduction in the lower layer. The effectiveness of the proposed algorithm and model are verified by simulation cases to achieve an 88% actual power matching degree and a 25% cost reduction. Moreover, the credit priority strategy is proposed and designed for the selection of EVs with higher dispatchability to ensure the effective implementation of allocation solutions.

Suggested Citation

  • Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005682
    DOI: 10.1016/j.apenergy.2022.119200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922005682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    2. Qing Kong & Michael Fowler & Evgueniy Entchev & Hajo Ribberink & Robert McCallum, 2018. "The Role of Charging Infrastructure in Electric Vehicle Implementation within Smart Grids," Energies, MDPI, vol. 11(12), pages 1-20, December.
    3. Xiao-Guang Yang & Teng Liu & Chao-Yang Wang, 2021. "Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles," Nature Energy, Nature, vol. 6(2), pages 176-185, February.
    4. Khaki, Behnam & Chu, Chicheng & Gadh, Rajit, 2019. "Hierarchical distributed framework for EV charging scheduling using exchange problem," Applied Energy, Elsevier, vol. 241(C), pages 461-471.
    5. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    2. Wang, Ziqi & Hou, Sizu, 2023. "A real-time strategy for vehicle-to-station recommendation in battery swapping mode," Energy, Elsevier, vol. 272(C).
    3. Jiashun Li & Aixing Li, 2024. "Optimizing Electric Vehicle Integration with Vehicle-to-Grid Technology: The Influence of Price Difference and Battery Costs on Adoption, Profits, and Green Energy Utilization," Sustainability, MDPI, vol. 16(3), pages 1-19, January.
    4. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    2. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    4. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    5. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    6. Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.
    7. Li, Zening & Su, Su & Jin, Xiaolong & Chen, Houhe, 2021. "Distributed energy management for active distribution network considering aggregated office buildings," Renewable Energy, Elsevier, vol. 180(C), pages 1073-1087.
    8. Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
    9. Li, Chengzhe & Zhang, Libo & Ou, Zihan & Wang, Qunwei & Zhou, Dequn & Ma, Jiayu, 2022. "Robust model of electric vehicle charging station location considering renewable energy and storage equipment," Energy, Elsevier, vol. 238(PA).
    10. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    11. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    12. Li, Changlong & Cui, Naxin & Chang, Long & Cui, Zhongrui & Yuan, Haitao & Zhang, Chenghui, 2022. "Effect of parallel connection topology on air-cooled lithium-ion battery module: Inconsistency analysis and comprehensive evaluation," Applied Energy, Elsevier, vol. 313(C).
    13. Wu, Zhongqun & Yang, Chan & Zheng, Ruijin, 2022. "Developing a holistic fuzzy hierarchy-cloud assessment model for the connection risk of renewable energy microgrid," Energy, Elsevier, vol. 245(C).
    14. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    15. Mandisi Gwabavu & Atanda Raji, 2021. "Dynamic Control of Integrated Wind Farm Battery Energy Storage Systems for Grid Connection," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    16. Qingguang Zhang & Mubasher Ikram & Kun Xu, 2024. "Online Optimization of Vehicle-to-Grid Scheduling to Mitigate Battery Aging," Energies, MDPI, vol. 17(7), pages 1-14, April.
    17. Li, Junqiu & Xue, Qiao & Gao, Zhuo & Liu, Zengcheng & Xiao, Yansheng, 2024. "Frequency varying heating strategy for lithium-ion battery rapid preheating under subzero temperature considering the limitation of on-board current," Applied Energy, Elsevier, vol. 365(C).
    18. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Lin, Runzi & Xu, Zhenhui & Huang, Xiaoliang & Gao, Jinwu & Chen, Hong & Shen, Tielong, 2022. "Optimal scheduling management of the parking lot and decentralized charging of electric vehicles based on Mean Field Game," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922005682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.