Dynamic characteristics and performance analysis of a double-stage energy storage heat transformer with a large temperature lift
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132963
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mehari, Abel & Wang, R.Z. & Xu, Z.Y., 2022. "Evaluation of a high-performance evaporative cooler-assisted open three-phase absorption thermal energy storage cycle for cooling," Applied Energy, Elsevier, vol. 325(C).
- Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
- Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
- Choi, Hyung Won & Jeong, Jinhee & Kang, Yong Tae, 2024. "Optimal discharging of solar driven sorption thermal battery for building cooling applications," Energy, Elsevier, vol. 296(C).
- Kant, K. & Pitchumani, R., 2022. "Advances and opportunities in thermochemical heat storage systems for buildings applications," Applied Energy, Elsevier, vol. 321(C).
- Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
- Daguenet-Frick, Xavier & Gantenbein, Paul & Müller, Jonas & Fumey, Benjamin & Weber, Robert, 2017. "Seasonal thermochemical energy storage: Comparison of the experimental results with the modelling of the falling film tube bundle heat and mass exchanger unit," Renewable Energy, Elsevier, vol. 110(C), pages 162-173.
- Horuz, Ilhami & Kurt, Bener, 2010. "Absorption heat transformers and an industrial application," Renewable Energy, Elsevier, vol. 35(10), pages 2175-2181.
- Donnellan, Philip & Cronin, Kevin & Byrne, Edmond, 2015. "Recycling waste heat energy using vapour absorption heat transformers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1290-1304.
- Ding, Zhixiong & Wu, Wei, 2022. "A novel double-effect compression-assisted absorption thermal battery with high storage performance for thermal energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 902-918.
- Xu, Z.Y. & Wang, R.Z., 2017. "A sorption thermal storage system with large concentration glide," Energy, Elsevier, vol. 141(C), pages 380-388.
- Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
- Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
- Xu, Z.Y. & Wang, R.Z., 2019. "Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output," Energy, Elsevier, vol. 167(C), pages 1086-1096.
- Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
- N’Tsoukpoe, K. Edem & Le Pierrès, Nolwenn & Luo, Lingai, 2012. "Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system," Energy, Elsevier, vol. 37(1), pages 346-358.
- Li, Xing & Wang, Zhifeng & Yang, Ming & Yuan, Guofeng, 2019. "Modeling and simulation of a novel combined heat and power system with absorption heat pump based on solar thermal power tower plant," Energy, Elsevier, vol. 186(C).
- Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
- Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
- N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
- Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
- Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
- Wakim, Michel & Rivera-Tinoco, Rodrigo, 2019. "Absorption heat transformers: Sensitivity study to answer existing discrepancies," Renewable Energy, Elsevier, vol. 130(C), pages 881-890.
- Wu, Wei & Bai, Yu & Huang, Hongyu & Ding, Zhixiong & Deng, Lisheng, 2019. "Charging and discharging characteristics of absorption thermal energy storage using ionic-liquid-based working fluids," Energy, Elsevier, vol. 189(C).
- Wang, Lingshi & Liu, Xiaobing & Yang, Zhiyao & Gluesenkamp, Kyle R., 2020. "Experimental study on a novel three-phase absorption thermal battery with high energy density applied to buildings," Energy, Elsevier, vol. 208(C).
- Li, Zhaojin & Bi, Yuehong & Wang, Cun & Shi, Qi & Mou, Tianhong, 2023. "Finite time thermodynamic optimization for performance of absorption energy storage systems," Energy, Elsevier, vol. 282(C).
- Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
- Zhai, Chong & Wu, Wei, 2023. "Experimental parameter study and correlation development of microchannel membrane-based absorption process for efficient thermal cooling with high compactness," Energy, Elsevier, vol. 279(C).
- Zhai, Chong & Wu, Wei, 2024. "A compact modular microchannel membrane-based absorption thermal energy storage system for highly efficient solar cooling," Energy, Elsevier, vol. 294(C).
- Ding, Zhixiong & Wu, Wei & Huang, Si-Min & Huang, Hongyu & Bai, Yu & He, Zhaohong, 2023. "A novel compression-assisted energy storage heat transformer for low-grade renewable energy utilization," Energy, Elsevier, vol. 263(PA).
- Ding, Zhixiong & Wu, Wei, 2024. "A phase-change-material-assisted absorption thermal battery for space heating under low ambient temperatures," Energy, Elsevier, vol. 299(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ding, Zhixiong & Wu, Wei, 2024. "Simulation of a multi-level absorption thermal battery with variable solution flow rate for adjustable cooling capacity," Energy, Elsevier, vol. 301(C).
- Ding, Zhixiong & Wu, Wei, 2022. "Type II absorption thermal battery for temperature upgrading: Energy storage heat transformer," Applied Energy, Elsevier, vol. 324(C).
- Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Li, Zhaojin & Bi, Yuehong & Wang, Cun & Shi, Qi & Mou, Tianhong, 2023. "Finite time thermodynamic optimization for performance of absorption energy storage systems," Energy, Elsevier, vol. 282(C).
- Min, Haye & Choi, Hyung Won & Jeong, Jaehui & Jeong, Jinhee & Kim, Young & Kang, Yong Tae, 2023. "Daily sorption thermal battery cycle for building applications," Energy, Elsevier, vol. 282(C).
- Ding, Zhixiong & Wu, Wei, 2021. "A hybrid compression-assisted absorption thermal battery with high energy storage density/efficiency and low charging temperature," Applied Energy, Elsevier, vol. 282(PA).
- Choi, Hyung Won & Jeong, Jinhee & Kang, Yong Tae, 2024. "Optimal discharging of solar driven sorption thermal battery for building cooling applications," Energy, Elsevier, vol. 296(C).
- Ji, Qiang & Che, Chunwen & Yin, Yonggao & Huang, Gongsheng & Pan, Tengxiang & Zhao, Donglin & Wang, Yikai, 2024. "Optimizing working fluids for advancing industrial heating performance of compression-absorption cascade heat pump," Applied Energy, Elsevier, vol. 376(PB).
- You, Jinfang & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "High-density and anti-clogging three-phase absorption heat storage with crystallization management," Applied Energy, Elsevier, vol. 376(PA).
- Ding, Zhixiong & Wu, Wei, 2022. "A novel double-effect compression-assisted absorption thermal battery with high storage performance for thermal energy storage," Renewable Energy, Elsevier, vol. 191(C), pages 902-918.
- Ding, Zhixiong & Wu, Wei & Chen, Youming & Leung, Michael, 2020. "Dynamic characteristics and performance improvement of a high-efficiency double-effectthermal battery for cooling and heating," Applied Energy, Elsevier, vol. 264(C).
- Ding, Zhixiong & Wu, Wei, 2024. "A phase-change-material-assisted absorption thermal battery for space heating under low ambient temperatures," Energy, Elsevier, vol. 299(C).
- Ding, Zhixiong & Wu, Wei & Leung, Michael K.H., 2022. "On the rational development of advanced thermochemical thermal batteries for short-term and long-term energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
- Zhai, Chong & Wu, Wei, 2024. "A compact modular microchannel membrane-based absorption thermal energy storage system for highly efficient solar cooling," Energy, Elsevier, vol. 294(C).
- Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
- Ding, Zhixiong & Sui, Yunren & Lin, Haosheng & Luo, Xianglong & Wang, Huasheng & Chen, Ying & Liang, Yingzong & Wu, Wei, 2024. "Experimental study on a two-stage absorption thermal battery with absorption-enhanced generation for high storage density and extremely low charging temperature (∼50 °C)," Applied Energy, Elsevier, vol. 363(C).
- Mehari, Abel & Wang, R.Z. & Xu, Z.Y., 2022. "Evaluation of a high-performance evaporative cooler-assisted open three-phase absorption thermal energy storage cycle for cooling," Applied Energy, Elsevier, vol. 325(C).
- Luo, Jielin & Yang, Hongxing, 2023. "Investigations on a bubble-pump-aided diffusion absorption heat transformer using deep eutectic solvent for harvesting and upgrading thermal energy," Applied Energy, Elsevier, vol. 340(C).
- Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun, 2024. "Experimental investigation of two-stage NH3–H2O resorption heat storage system with solution concentration difference," Energy, Elsevier, vol. 304(C).
More about this item
Keywords
Double-stage; Temperature lift; Low-grade energy; Energy storage heat transformer; Charging/discharging processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.