IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033844.html
   My bibliography  Save this article

Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle

Author

Listed:
  • You, Jinfang
  • Zhang, Xi
  • Gao, Jintong
  • Wang, Ruzhu
  • Xu, Zhenyuan

Abstract

Thermally-coupled hybrid absorption-compression heat pump cycle could achieve large temperature lift and high output temperature, which is promising for the decarbonization of industrial heat demand. However, the cycle also has many heat exchange processes, resulting in irreversible losses in different components and performance degradation. In this study, entransy dissipation is used for the heat exchange irreversibility analysis of different components in the cycle. Heat and mass transfer model and entransy dissipation model for combined heat and mass transfer components such as absorber and generator are proposed. By comparing with the exergy loss, it proved that the entransy dissipation calculation model is reasonable. In addition, the T-Q diagram obtained by entransy dissipation analysis visually illustrates the heat exchange processes in each heat exchange component, which shows that entransy dissipation analysis has the characteristics of focusing on heat exchange, process-oriented and visualization. Results of entransy dissipation analysis are then used to guide the heat exchange enhancement of different components, thus optimizing the performance of whole heat pump cycle. Reducing the heat exchange irreversibility in internal heat recovery part can obtain the maximize improvement on COP by 3.92 %. The effect of thermal coupling temperature on exergy based and entransy based parameters of the heat pump cycle is investigated. The entransy increment states the optimal coupling temperature as 73.9 °C, in agreement with the COP and exergy analysis results. Therefore, from entransy dissipation to entransy increment, entransy analysis is expected to be a powerful tool to guide from the heat transfer optimization to the thermodynamic system optimization.

Suggested Citation

  • You, Jinfang & Zhang, Xi & Gao, Jintong & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Entransy based heat exchange irreversibility analysis for a hybrid absorption-compression heat pump cycle," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033844
    DOI: 10.1016/j.energy.2023.129990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Rosenow & Duncan Gibb & Thomas Nowak & Richard Lowes, 2022. "Heating up the global heat pump market," Nature Energy, Nature, vol. 7(10), pages 901-904, October.
    2. Jung, Chung Woo & Song, Joo Young & Kang, Yong Tae, 2018. "Study on ammonia/water hybrid absorption/compression heat pump cycle to produce high temperature process water," Energy, Elsevier, vol. 145(C), pages 458-467.
    3. Xu, Sheng-Zhi & Guo, Zeng-Yuan, 2021. "Entransy transfer analysis methodology for energy conversion systems operating with thermodynamic cycles," Energy, Elsevier, vol. 224(C).
    4. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Jian Sun & Yinwu Wang & Kexin Wu & Zhihua Ge & Yongping Yang, 2022. "Analysis of a New Super High Temperature Hybrid Absorption-Compression Heat Pump Cycle," Energies, MDPI, vol. 15(20), pages 1-14, October.
    6. Chen, Qun & Fu, Rong-Huan & Xu, Yun-Chao, 2015. "Electrical circuit analogy for heat transfer analysis and optimization in heat exchanger networks," Applied Energy, Elsevier, vol. 139(C), pages 81-92.
    7. Lei Yang & Sihao Huang & Zhenneng Lu & Yulie Gong & Huashan Li, 2021. "Application and discussion on entransy analysis of ammonia/salt absorption heat pump systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(3), pages 977-986.
    8. Wu, Jinxing & Sun, Shoujun & Song, Qinglu & Sun, Dandan & Wang, Dechang & Li, Jiaxu, 2023. "Energy, exergy, exergoeconomic and environmental (4E) analysis of cascade heat pump, recuperative heat pump and carbon dioxide heat pump with different temperature lifts," Renewable Energy, Elsevier, vol. 207(C), pages 407-421.
    9. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    10. Cheng, Xuetao & Liang, Xingang, 2012. "Entransy loss in thermodynamic processes and its application," Energy, Elsevier, vol. 44(1), pages 964-972.
    11. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2021. "An air-source hybrid absorption-compression heat pump with large temperature lift," Applied Energy, Elsevier, vol. 291(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
    2. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    4. Jarosław Kabiesz & Robert Kubica, 2024. "Optimizing the Recovery of Latent Heat of Condensation from the Flue Gas Stream through the Combustion of Solid Biomass with a High Moisture Content," Energies, MDPI, vol. 17(7), pages 1-19, April.
    5. Luberti, Mauro & Gowans, Robert & Finn, Patrick & Santori, Giulio, 2022. "An estimate of the ultralow waste heat available in the European Union," Energy, Elsevier, vol. 238(PC).
    6. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    7. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Liu, Changchun & Han, Wei & Xue, Xiaodong, 2022. "Experimental investigation of a high-temperature heat pump for industrial steam production," Applied Energy, Elsevier, vol. 312(C).
    9. Wu, Wei & Zhai, Chong & Huang, Si-Min & Sui, Yunren & Sui, Zengguang & Ding, Zhixiong, 2022. "A hybrid H2O/IL absorption and CO2 compression air-source heat pump for ultra-low ambient temperatures," Energy, Elsevier, vol. 239(PB).
    10. Obrist, Michel D. & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2023. "High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland," Energy Policy, Elsevier, vol. 173(C).
    11. Feng, Chunyu & Guo, Cong & Chen, Junbin & Tan, Sicong & Jiang, Yuyan, 2024. "Thermodynamic analysis of a dual-pressure evaporation high-temperature heat pump with low GWP zeotropic mixtures for steam generation," Energy, Elsevier, vol. 294(C).
    12. Vannoni, Alberto & Sorce, Alessandro & Traverso, Alberto & Fausto Massardo, Aristide, 2023. "Large size heat pumps advanced cost functions introducing the impact of design COP on capital costs," Energy, Elsevier, vol. 284(C).
    13. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Liu, Hua & Zhang, Zhiping & Wu, Yongqiang & Yue, Qingxue & Zhang, Ying, 2024. "Film condensation experiments of R1233zd(E) over horizontal tubes and high-temperature condensation predictions for high-temperature heat pump," Energy, Elsevier, vol. 300(C).
    14. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    15. Sadi, Meisam & Alsagri, Ali Sulaiman & Rahbari, Hamid Reza & Khosravi, Soheil & Arabkoohsar, Ahmad, 2024. "Thermal energy demand decarbonization for the industrial sector via an innovative solar combined technology," Energy, Elsevier, vol. 292(C).
    16. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    18. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    19. Zou, Lingeng & Yu, Jianlin, 2024. "4E assessment of ejector-enhanced R290 heat pump cycle with a sub-cooler for cold region applications," Energy, Elsevier, vol. 298(C).
    20. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.