IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp1588-1601.html
   My bibliography  Save this article

A new decision model based on DEA and simulation to evaluate renewable energy projects under interval-valued intuitionistic fuzzy uncertainty

Author

Listed:
  • Davoudabadi, Reza
  • Mousavi, Seyed Meysam
  • Mohagheghi, Vahid

Abstract

Energy plays a vital role in the development and well-being of any country. Finding the right energy projects and investing in them could lead to improving the overall condition of nations. Despite the importance of evaluation of energy projects, several factors complicate this issue. The efficiency of projects, reliability of assessments and uncertainty are some of the major issues in energy project evaluation. To simultaneously address all of these essential issues, this paper presents a new approach in renewable energy project evaluation based on the concepts of data envelopment analysis (DEA) and fuzzy simulation of interval-valued intuitionistic fuzzy sets (IVIFSs). The concept of DEA is developed, and a new approach based on introducing a new simulation method for IVIFSs is presented. Moreover, the approach is the last aggregation that avoids information loss. To illustrate the process of this approach, a case study from the literature is adopted and solved. A sensitivity analysis is carried out, and the results are displayed.

Suggested Citation

  • Davoudabadi, Reza & Mousavi, Seyed Meysam & Mohagheghi, Vahid, 2021. "A new decision model based on DEA and simulation to evaluate renewable energy projects under interval-valued intuitionistic fuzzy uncertainty," Renewable Energy, Elsevier, vol. 164(C), pages 1588-1601.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1588-1601
    DOI: 10.1016/j.renene.2020.09.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Çelikbilek, Yakup & Tüysüz, Fatih, 2016. "An integrated grey based multi-criteria decision making approach for the evaluation of renewable energy sources," Energy, Elsevier, vol. 115(P1), pages 1246-1258.
    2. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    3. Wade D. Cook & Joe Zhu, 2015. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 2, pages 23-43, Springer.
    4. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    5. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
    6. Shiraishi, Kenji & Shirley, Rebekah G. & Kammen, Daniel M., 2019. "Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh," Applied Energy, Elsevier, vol. 235(C), pages 1457-1467.
    7. Hassan Hashemi & Jalal Bazargan & S. Mousavi, 2013. "A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2029-2051, May.
    8. Doukas, Haris Ch. & Andreas, Botsikas M. & Psarras, John E., 2007. "Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables," European Journal of Operational Research, Elsevier, vol. 182(2), pages 844-855, October.
    9. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    10. Edmundas Kazimieras Zavadskas & Jurgita Antucheviciene & Samarjit Kar, 2019. "Multi-Objective and Multi-Attribute Optimization for Sustainable Development Decision Aiding," Sustainability, MDPI, vol. 11(11), pages 1-6, May.
    11. Karunathilake, Hirushie & Hewage, Kasun & Mérida, Walter & Sadiq, Rehan, 2019. "Renewable energy selection for net-zero energy communities: Life cycle based decision making under uncertainty," Renewable Energy, Elsevier, vol. 130(C), pages 558-573.
    12. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    13. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Honggang & Xiao, Zhi & Wang, Jianqiang & Li, Jian, 2021. "A decision support framework for new energy selection in rural areas from the perspectives of information reliability and criterion non-compensation," Energy, Elsevier, vol. 235(C).
    2. Zhao, Lu-Tao & Liu, Zhao-Ting & Cheng, Lei, 2021. "How will China's coal industry develop in the future? A quantitative analysis with policy implications," Energy, Elsevier, vol. 235(C).
    3. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    4. Zheng, Xuejing & Yang, Xueqing & Miao, Hongfei & Liu, Huzhen & Yu, Yanzhe & Wang, Yaran & Zhang, Huan & You, Shijun, 2022. "A factor analysis and self-organizing map based evaluation approach for the renewable energy heating potentials at county level: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Shabani, Mohadeseh & Kordrostami, Sohrab & Jahani Sayyad Noveiri, Monireh, 2023. "Renewable energy performance analysis using fuzzy dynamic directional distance function model under natural and managerial disposability," Applied Energy, Elsevier, vol. 352(C).
    6. de Almeida, Liliane & Augusto de Jesus Pacheco, Diego & Caten, Carla Schwengber ten & Jung, Carlos Fernando, 2021. "A methodology for identifying results and impacts in technological innovation projects," Technology in Society, Elsevier, vol. 66(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Wang, Ni & Heijnen, Petra W. & Imhof, Pieter J., 2020. "A multi-actor perspective on multi-objective regional energy system planning," Energy Policy, Elsevier, vol. 143(C).
    3. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    4. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    5. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    6. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    7. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    8. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    9. Wu, Yunna & Xu, Chuanbo & Zhang, Ting, 2018. "Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China," Energy, Elsevier, vol. 147(C), pages 1227-1239.
    10. Ali Mostafaeipour & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Mehdi Jahangiri & Kuaanan Techato, 2020. "A Thorough Analysis of Potential Geothermal Project Locations in Afghanistan," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    11. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    12. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    13. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    14. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    15. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Toloo, Mehdi & Ghazizadeh, Mohammad Sadegh, 2016. "Eco-efficiency considering the issue of heterogeneity among power plants," Energy, Elsevier, vol. 111(C), pages 722-735.
    16. Yue Xu & Zebin Wang & Yung-Ho Chiu & Fangrong Ren, 2020. "Research on energy-saving and emissions reduction efficiency in Chinese thermal power companies," Energy & Environment, , vol. 31(5), pages 903-919, August.
    17. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    18. Roychaudhuri, Pritam Sankar & Kazantzi, Vasiliki & Foo, Dominic C.Y. & Tan, Raymond R. & Bandyopadhyay, Santanu, 2017. "Selection of energy conservation projects through Financial Pinch Analysis," Energy, Elsevier, vol. 138(C), pages 602-615.
    19. Çolak, Murat & Kaya, İhsan, 2017. "Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 840-853.
    20. Shermeh, H. Ebrahimzadeh & Najafi, S.E. & Alavidoost, M.H., 2016. "A novel fuzzy network SBM model for data envelopment analysis: A case study in Iran regional power companies," Energy, Elsevier, vol. 112(C), pages 686-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:1588-1601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.