IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v373y2024ics0306261924012534.html
   My bibliography  Save this article

A coordinated active and reactive power optimization approach for multi-microgrids connected to distribution networks with multi-actor-attention-critic deep reinforcement learning

Author

Listed:
  • Dong, Lei
  • Lin, Hao
  • Qiao, Ji
  • Zhang, Tao
  • Zhang, Shiming
  • Pu, Tianjiao

Abstract

As a promising approach to managing distributed energy, the use of microgrids has attracted significant attention among those managing continuous connections to distribution networks. However, the barriers of the data sharing among different microgrids, the uncertainty of the distributed renewable sources and loads, and the nonlinear optimization of power flow make traditional model-based optimization methods difficult to be applied. In this paper, a data-driven coordinated active and reactive power optimization method is proposed for distribution networks with multi-microgrids. A multi-agent deep reinforcement learning (MADRL) method is used to protect the data privacy of each microgrids. Moreover, attention mechanism, which pays attention to crucial information, is presented to overcome the problem of slow convergence caused by the dimensionality explosion of the optimized variables. Two types of agents, controlling discrete action and continuous action devices, respectively, are formulated in coordinated optimization, which reduces voltage violations and improves the system operation efficiency. In addition, in order to improve the performance of the online agent model under variable operation conditions, the transfer learning is embedded in the training process of the MADRL. The proposed method is verified on a modified IEEE 33-bus distribution network with nine microgrids.

Suggested Citation

  • Dong, Lei & Lin, Hao & Qiao, Ji & Zhang, Tao & Zhang, Shiming & Pu, Tianjiao, 2024. "A coordinated active and reactive power optimization approach for multi-microgrids connected to distribution networks with multi-actor-attention-critic deep reinforcement learning," Applied Energy, Elsevier, vol. 373(C).
  • Handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012534
    DOI: 10.1016/j.apenergy.2024.123870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924012534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Yuan & Matsunami, Yuki & Miyata, Shohei & Akashi, Yasunori, 2022. "Multi-agent reinforcement learning dealing with hybrid action spaces: A case study for off-grid oriented renewable building energy system," Applied Energy, Elsevier, vol. 326(C).
    2. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    3. Kofinas, P. & Dounis, A.I. & Vouros, G.A., 2018. "Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids," Applied Energy, Elsevier, vol. 219(C), pages 53-67.
    4. He, Hongjie & Du, Ershun & Zhang, Ning & Kang, Chongqing & Wang, Xuebin, 2021. "Enhancing the power grid flexibility with battery energy storage transportation and transmission switching," Applied Energy, Elsevier, vol. 290(C).
    5. Chen, Zexing & Zhang, Yongjun & Tang, Wenhu & Lin, Xiaoming & Li, Qifeng, 2019. "Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response," Energy, Elsevier, vol. 176(C), pages 171-183.
    6. Kang, Dongju & Kang, Doeun & Hwangbo, Sumin & Niaz, Haider & Lee, Won Bo & Liu, J. Jay & Na, Jonggeol, 2023. "Optimal planning of hybrid energy storage systems using curtailed renewable energy through deep reinforcement learning," Energy, Elsevier, vol. 284(C).
    7. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.
    8. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    9. Liu, Yixin & Guo, Li & Wang, Chengshan, 2018. "A robust operation-based scheduling optimization for smart distribution networks with multi-microgrids," Applied Energy, Elsevier, vol. 228(C), pages 130-140.
    10. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    11. Duan, Jiandong & Liu, Fan & Yang, Yao, 2022. "Optimal operation for integrated electricity and natural gas systems considering demand response uncertainties," Applied Energy, Elsevier, vol. 323(C).
    12. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2017. "An enhanced SOCP-based method for feeder load balancing using the multi-terminal soft open point in active distribution networks," Applied Energy, Elsevier, vol. 208(C), pages 986-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guozhen Ma & Ning Pang & Yunjia Wang & Shiyao Hu & Xiaobin Xu & Zeya Zhang & Changhong Wang & Liai Gao, 2024. "Two-Stage Optimal Scheduling Strategy of Microgrid Distribution Network Considering Multi-Source Agricultural Load Aggregation," Energies, MDPI, vol. 17(21), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yixin & Shi, Haoqi & Guo, Li & Xu, Tao & Zhao, Bo & Wang, Chengshan, 2022. "Towards long-period operational reliability of independent microgrid: A risk-aware energy scheduling and stochastic optimization method," Energy, Elsevier, vol. 254(PB).
    2. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
    3. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    4. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    5. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    6. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    7. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    8. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    9. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    10. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    11. Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
    12. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    13. Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
    14. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    15. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.
    16. Jani, Ali & Jadid, Shahram, 2023. "Two-stage energy scheduling framework for multi-microgrid system in market environment," Applied Energy, Elsevier, vol. 336(C).
    17. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    18. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    19. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    20. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:373:y:2024:i:c:s0306261924012534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.